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Abstract—We consider the decentralized output feedback
control of stochastic linear systems, subject to robust linear
constraints on both the state and input trajectories. For prob-
lems with partially nested information structures, we establish
an upper bound on the minimum achievable cost by computing
the optimal affine decentralized control policy as a solution to
a finite-dimensional conic program. For problems with general
(possibly nonclassical) information structures, we construct
another finite-dimensional conic program whose optimal value
stands as a lower bound on the minimum achievable cost. With
this lower bound in hand, one can bound the suboptimality
incurred by any feasible decentralized control policy. A study
of a partially nested system reveals that affine policies can be
close to optimal, even in the presence state/input constraints
and non-Gaussian disturbances.

I. INTRODUCTION

Problems of decentralized decision making naturally arise
in the control of large-scale networked systems, such as elec-
tric power networks, transportation networks, supply chains
and digital communication networks [1]. In such systems,
the information sharing between controllers is often limited,
because of the geographical separation between the system
components, cost of communication, and limits on compu-
tation. As a consequence, there arises a need to decentralize
the use of information in control design.

In general, the design of an optimal decentralized con-
troller amounts to an infinite-dimensional, nonconvex opti-
mization problem. The difficulty in solution derives in part
from the manner in which information is shared between
controllers – the so called information structure of a problem;
see [2] for a survey. Considerable effort has been made to
identify information structures under which the problem of
decentralized control design can be recast as an equivalent
convex optimization problem. For instance, partial nestedness
of the information structure [3] is known to simplify the
control design, as it eliminates the incentive to signal between
controllers. In particular, linear policies are guaranteed to
be optimal for decentralized LQG problems with partially
nested information structures [3]–[6]. Closely related no-
tions of quadratic invariance [7] and funnel causality [8]
guarantee convexity of decentralized controller synthesis,
which minimizes the closed-loop norm of an LTI system.
There is also a body of literature offering insight on the
structure of optimal decentralized controllers for problems
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with nonclassical information structures; we refer the reader
to [9]–[12] for recent advances.

Many of the aforementioned results are reliant on the
assumption of a Gaussian disturbance process and cannot
directly accommodate explicit constraints on the state and
input of the system. There is, however, another stream of
literature, which directly addresses such issues by extending
techniques from centralized model predictive control (MPC)
control design to the decentralized setting [13]–[16]. Al-
though the decentralized controllers they construct exhibit
good performance in practice, they are suboptimal in general.
The question as to how far from optimal such policies might
be forms the basis of motivation for this paper.

The setting we consider in this paper entails the decen-
tralized output feedback control of a discrete-time, linear
time-varying system over a finite horizon; the system is
subjected to coupled linear constraints on the state and
input trajectories and the disturbance process is assumed
to have known and bounded support described by convex
conic inequalities. The problem of determining an optimal
decentralized control policy for such systems is, in general,
computationally intractable. In this paper, we abandon the
search for optimal decentralized control policies and resort,
instead, to approximation.

Relying to a great degree on recent advances in stochastic
programming [17] and control [18], we explore the extent to
which one might construct suboptimal (affine) policies with
efficiently computable bounds on performance. Our primary
contributions are two-fold. First, for problems with partially
nested information structures, we show that the problem of
determining an optimal affine decentralized output feedback
control policy can be equivalently reformulated as a finite-
dimensional conic program; whose optimal value yields an
upper bound on the minimum achievable cost. Second, for
problems with general (possibly nonclassical) information
structures, we construct another finite-dimensional conic pro-
gram whose optimal value is guaranteed to stand as lower
bound on minimum achievable cost. To the best of our
knowledge, such result is the first to offer an efficiently com-
putable (and nontrivial) lower bound on the cost achievable
by decentralized control policies in the setting considered.

The remainder of this paper is organized as follows.
Section II formulates the decentralized output feedback con-
trol design problem. Section III describes a procedure for
computing the optimal affine controller for problems with
partially nested information structures through solution of
a finite-dimensional conic program – the optimal value of
which serves as a primal upper bound on the minimum
achievable cost. Section IV treats problems with general in-



formation structures and specifies another finite-dimensional
conic program whose optimal value stands as a dual lower
bound on the minimum achievable cost. Section V offers
a numerical analysis of a problem instance with a partially
nested information structure. We omit the majority of math-
ematical proofs due to space constraints.

Notation: Let R denote the set of real numbers. Denote
the transpose of a vector x ∈ Rn by x′. We use the comma
operator (,) to denote vertical vector concatenation. That
is, for any pair of vectors x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , ym) ∈ Rm, we define their concatenation
as (x, y) = (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. Given a
process {x(t)} indexed by t = 0, · · · , T − 1, we denote
by xt = (x(0), x(1), · · · , x(t)) its history until time t. We
consider block matrices throughout the paper. Given a block
matrix A whose dimension will be clear from the context,
we denote by [A]ij its (i, j)th block. We denote the trace of a
square matrix A by Tr (A). Finally, we denote by K a proper
cone (i.e., convex, closed, and pointed with an nonempty
interior). Let K∗ denote its dual cone. We write x �K y
to indicate that x − y ∈ K. For a matrix A of appropriate
dimension, A �K 0 denotes its columnwise inclusion in K.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time, linear time-varying system con-
sisting of N coupled subsystems whose dynamics are de-
scribed by

xi(t+ 1) =

N∑
j=1

(Aij(t)xj(t) +Bij(t)uj(t)) +Gi(t)ξ(t),

(1)

for i = 1, . . . , N . The system operates for finite time
t = 0, . . . , T − 1 and the initial condition is assumed fixed
and known. We associate with each subsystem i a local state
xi(t) ∈ Rnix and local input ui(t) ∈ Rniu . And we denote
by ξ(t) ∈ Rnξ the stochastic disturbance process whose
joint probability distribution is assumed known. We denote
by yi(t) ∈ Rniy the local measured output of subsystem i at
time t. It is given by

yi(t) =

N∑
j=1

Cij(t)xj(t) +Hi(t)ξ(t), (2)

for i = 1, . . . , N . All system matrices are assumed to be real
and of compatible dimensions.

In the sequel, it will be convenient to work with a more
compact representation of the system (1) and (2), given by

x(t+ 1) = A(t)x(t) +B(t)u(t) +G(t)ξ(t)

y(t) = C(t)x(t) +H(t)ξ(t).

Here, we denote by x(t) = (x1(t), . . . , xN (t)) ∈
Rnx , u(t) = (u1(t), . . . , uN (t)) ∈ Rnu , and y(t) =
(y1(t), . . . , yN (t)) ∈ Rny the full system state, input, and

output at time t, respectively. Their corresponding dimen-
sions are given by nx =

∑N
i=1 n

i
x, nu =

∑N
i=1 n

i
u, and

ny =
∑N
i=1 n

i
y . We will occasionally refer to the tuple

Θ := {A(t), B(t), G(t), C(t), H(t)}T−1t=0 ,

when making reference to the parameterization of system (1)
and (2). The system trajectories are related according to

x = Bu+Gξ and y = Cx+Hξ,

where x, u, ξ, and y denote the trajectories of the full system
state, input, disturbance, and output, respectively.1 We denote
them by

x = (x(0), . . . , x(T )) ∈ RNx

u = (u(0), . . . , u(T − 1)) ∈ RNu

ξ = (1, ξ(0), . . . , ξ(T − 1)) ∈ RNξ

y = (1, y(0), . . . , y(T − 1)) ∈ RNy ,

where their dimensions are given by Nx = nx(T + 1),
Nu = nuT , Nξ = 1 + nξT , and Ny = 1 + nyT . Notice
that in our specification of the both the disturbance and
output trajectories, ξ and y, we have extended each trajectory
to include a constant scalar as its initial component. Such
notational convention will prove useful in simplifying the
specification of affine control policies in the sequel.

B. Disturbance Model

In order to ensure well-posedness of the problem to follow,
we require that the disturbance process satisfy the following
conditions. First, we assume that the disturbance trajectory
ξ has support Ξ that is a nonempty and compact subset of
RNξ , representable by

Ξ = {ξ ∈ RNξ | ξ1 = 1 and Wkξ �K 0, k = 1, . . . , `},

where K ⊆ RNξ is a proper cone and the matrices Wk ∈
RNξ×Nξ are assumed known for k = 1, . . . , `. In addition
to compactness, we require that the linear hull of Ξ spans
RNξ . Such assumption is without loss of generality. And, it
is straightforward to verify that such assumption ensures that
the corresponding second-order moment matrix, defined as
M := E (ξξ′) , is both invertible and positive definite. The
fact that the second-order moment matrix M is finite-valued
is a consequence of our assumption that the disturbance have
compact support. We remark that our choice of disturbance
model represents a departure from the standard assumption of
Gaussianity in problems of decentralized stochastic control.

C. System Constraints

In characterizing the set of feasible input trajectories, we
require that the input and resulting state trajectory respect the
following infinite collection of linear inequality constraints,

Fxx+ Fuu+ Fξξ ≤ 0, for all ξ ∈ Ξ, (3)

1The block matrices (A(t), B(t), G(t), C(t), H(t)) for t = 0, . . . , T−1
are readily constructed from the primitive problem data defining (1) and (2).
The explicit specification of (B,G,C,H) can be found in Appendix A.



where Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , and Fξ ∈ Rm×Nξ are
assumed arbitrary. Namely, the input u and resulting state
trajectory x should satisfy the m linear inequality constraints,
whatever the realization of the disturbance ξ. We will refer to
input trajectories satisfying (3) as being robustly feasible. The
challenge in determining a robustly feasible input trajectory
derives in part from the need to enforce the infinitely many
constraints defined in (3). This difficulty is exasperated by
the fact that input trajectories will, in general, be allowed
to depend causally on output trajectories through arbitrary
functions belonging to an infinite-dimensional space.

D. Decentralized Control Design

At each time t, each subsystem must determine its local in-
put based on the local information to which it has access. We
describe the pattern according to which information is shared
between subsystems with a directed graph GI = (V, EI),
which we refer to as the information graph of the system.
Here, the node set V := {1, . . . , N} assigns a distinct node i
to each subsystem i, and the directed edge set EI determines
the pattern of information sharing between subsystems. More
precisely, we let (i, j) ∈ EI if and only if for each time
t, subsystem j has access to subsystem i’s local output
measurement yi(t). We include self-loops (i, i) in the edge
set EI to capture the implicit assumption that each subsystem
i has access to its local output measurement yi(t) at each time
t. We also assume that each subsystem has perfect recall; that
is to say that each subsystem has access to its entire history
of past information at any given time. We thus define the
local information available to each subsystem i at time t as

zi(t) := {ytj | j ∈ N−GI (i)}, (4)

and restrict its local control input to be of the form

ui(t) = γi(zi(t), t) (5)

– a causal measurable function γi(·, t) of its local informa-
tion. Here, we take N−GI (i) := {j ∈ V | (j, i) ∈ EI} to denote
the set of nodes belonging to the in-neighborhood of node i,
according to the directed graph GI . We define the local con-
trol policy for subsystem i as γi = (γi(·, 0), . . . , γi(·, T−1)).
We refer to the collection of local control policies γ =
(γ1, . . . , γN ) as the decentralized control policy and define
Γ(GI) as the family of all decentralized control policies
respecting the information structure, (4) and (5), induced
by the information graph GI . Henceforth, we will use the
information graph GI to denote the information structure
associated with a decentralized control policy γ ∈ Γ(GI).2

We measure the performance of a decentralized control
policy γ according to the expected quadratic cost

J(γ) := Eγ (x′Rxx+ u′Ruu) , (6)

where expectation is taken with respect to the joint distribu-
tion on (x, u) induced by the choice of policy γ. The cost
matrices Rx ∈ RNx×Nx and Ru ∈ RNu×Nu are assumed to

2We remark that the class information structures considered in this paper
cannot accommodate delay constraints on information sharing.

be symmetric positive semidefinite and positive definite, re-
spectively. Of interest is the characterization of decentralized
control policies, which minimize the expected cost criterion
(6) while respecting the informational and system constraints.
We define the decentralized control design problem as

minimize Eγ (x′Rxx+ u′Ruu)

subject to γ ∈ Γ(GI)
Fxx+ Fuu+ Fξξ ≤ 0

x = Bu+Gξ

y = Cx+Hξ

u = γ(y)

∀ ξ ∈ Ξ. (7)

The decentralized control policy γ∗ ∈ Γ(GI) is said to be
optimal if it is robustly feasible and J(γ∗) ≤ J(γ) for all
robustly feasible policies γ ∈ Γ(GI). We denote the optimal
value of problem (7) by J∗ := J(γ∗) for γ∗ optimal.

In general, the decentralized control design problem (7)
amounts to an infinite-dimensional, nonconvex optimization
problem with neither analytical nor computationally efficient
solution available at present time [1], [2], [18], [19]. The
difficulty in solution derives in part from the partial observa-
tion of state and decentralization of information among the
different controllers. In what follows, we abandon the search
for optimal decentralized control policies. We instead resort
to approximation and explore the extent to which one might
construct suboptimal policies with efficiently computable
bounds on performance.

III. AFFINE POLICIES AND A PRIMAL UPPER BOUND

The partial nesting of information is known to simplify
problems of decentralized control design, as it eliminates the
incentive to signal between controllers [2]–[4]. In this section,
we restrict our attention to finite-dimensional decentralized
control policies that are affine in the measured output, and
explore the extent to which the partial nesting of information
might facilitate the efficient optimization over such restricted
class of policies. We demonstrate how powerful techniques
for centralized affine control design [18], [20]–[22] can be
extended to decentralized systems to both compute optimal
affine decentralized policies and bound their loss optimality
via finite-dimensional convex optimization. In particular, our
approach to bounding the loss of optimality incurred by
affine decentralized controllers relies centrally on techniques
developed in [17], [18].

A. Purification of Partially Nested Information

In what follows, we introduce the standard concept of
output purification [18], [20] and show that, under a partially
nested information structure, the output process and the pu-
rified output process generate the same information for each
subsystem. One can thus reparameterize the decentralized
control policy in the purified output process without loss
of optimality. The advantage in doing so derives from the
purified output process’s independence from the underlying
control policy. Before proceeding, we provide a formal
definition of partially nested information structures using the
notion of precedence, as defined by Ho and Chu [3].



Definition 1 (Precedence). Given the information struc-
ture defined by GI , we say subsystem j is a precedent
to subsystem i, denoted by j ≺ i, if there exist times
0 ≤ s < t ≤ T − 1 and subsystem k ∈ N−GI (i) such that[
C(t)Ats+1B(s)

]
kj
6= 0.3

Recall that
[
C(t)Ats+1B(s)

]
kj

denotes the (k, j)th block
of C(t)Ats+1B(s), which is an N ×N block matrix. Essen-
tially, j is precedent to i, if the control input at subsystem j
can affect the local information available to subsystem i in
the future.

Definition 2 (Partially Nested Information). The information
structure defined by GI is partially nested with respect to
the system Θ, if j ≺ i =⇒ zj(t) ⊆ zi(t) for all times t =
0, . . . , T − 1.

We denote by PN(Θ) the set of information graphs that are
partially nested with respect to the the system Θ. We note
that the above definition of partial nestedness is tailored for
the information structure considered in this paper. A more
general definition of partial nestedness can be found in [3],
[4], and one can refer to [23] for an investigation on how
partial nestedness is manifested under different information
structures.

Next, we introduce the concept of output purification
as defined in [20]. Given an input process u(t) and its
corresponding output process y(t), define the sequence of
purified outputs η(t) according to

x̄(0) = 0,

x̄(t+ 1) = A(t)x̄(t) + B(t)u(t),

ȳ(t) = C(t)x̄(t),

η(t) = y(t) − ȳ(t),

for t = 0, · · · , T − 1. Similar to the definition of the local
information in (4), we define the local purified information
available to each subsystem i at time t as

ζi(t) = {ηtj | j ∈ N−GI (i)}.

In addition, we define the trajectory of the purified output
according to η = (1, η(0), . . . , η(T − 1)) ∈ RNy . It is
straightforward to establish the following relation, which
reveals the purified output trajectory η to be independent of
the input trajectory u. Namely,

η = Pξ,

where we define the matrix P := (CG+H) ∈ RNy×Nξ .
We establish the following important Lemma, which re-

veals that, given a partially nested information structure, the
local information zi(t) and purified local information ζi(t)
contain the same information for each subsystem i and time
t. In other words, they generate the same σ-algebras.

Lemma 1 (Equivalence of Information). Let γ ∈ Γ(GI) be
any decentralized control policy. If GI ∈ PN(Θ), then the
local information zi(t) and purified local information ζi(t)

3We refer the reader to Appendix A for a definition of the matrix At
s+1.

are functions of each other for each subystem i = 1, · · · , N
and time t = 0, · · · , T − 1.

We defer the proof of Lemma 1 to the Appendix. A
consequence of Lemma 1 is that, for problems with a partially
nested information structure, a reparameterization of the
decentralized control policy in the purified output process
(i.e., u = γ(η) for γ ∈ Γ(GI)) is without loss of optimality.

B. Primal Affine Decentralized Control Policies

In this section, we restrict our attention to decentralized
control policies that are affine in the measured output. The
ability to solve the decentralized control design problem
(7) given such restriction will yield a robustly feasible
suboptimal policy whose expected cost stands as an upper
bound on the optimal value of (7). The restriction to affine
policies, alone, does not however circumvent the problem
of nonconvexity in decentralized control design, due to the
possibility for signaling between controllers under general in-
formation structures. In what follows, we show that – given a
partially nested information structure and restriction to affine
output feedback policies – the decentralized control design
problem (7) can be equivalently reformulated as a semi-
infinite robust convex program. And, given our assumption
that the disturbance has compact support described by conic
inequalities, this semi-infinite robust convex program can
be equivalently reformulated as a finite-dimensional conic
optimization problem.

Given an information structure GI , we consider affine
control policies of the form

ui(t) = ūi(t) +

t∑
s=0

∑
j∈N−GI (i)

Kij(t, s)yj(s), (8)

for each subsystem i = 1, · · · , N and time t = 0, · · · , T −1.
Here, ūi(t) ∈ Rniu represents the open-loop component of
the control and Kij(t, s) ∈ Rniu×n

j
y the feedback control

gain. One can lift the representation in (8) to relate the output
trajectory y to the input trajectory u under the linear map

u = Ky, where K ∈ S(GI).

Here, were require the gain K ∈ RNu×Ny to belong to
S(GI), which we define to be the linear space of causal
(lower block triangular) matrices respecting the information
structure GI . That is, for any K ∈ S(GI), the decentralized
control policy defined by γ(y) = Ky satisfies γ ∈ Γ(GI).
Given the restriction to decentralized control policies that
are affine in the measured output, we have the following
reformulation of the decentralized control design problem (7)
as

minimize E (x′Rxx+ u′Ruu)

subject to K ∈ S(GI)
Fxx+ Fuu+ Fξξ ≤ 0

x = Bu+Gξ

y = Cx+Hξ

u = Ky

∀ ξ ∈ Ξ. (9)



We denote by Jp the optimal value of problem (9), which
clearly holds as a primal upper bound on the optimal value
of problem (7). Namely, J∗ ≤ Jp. The affine control design
problem (9) is known to be nonconvex in the matrix variable
K [18], [24], [25]. However, under the additional assumption
of partially nested information, one can apply a suitable
change of variables to obtain an equivalent reformulation
of problem (9) as a semi-infinite robust convex program.
The underlying technique is equivalent in nature to the
classical Youla parameterization [26]. We have the following
proposition.

Proposition 1. If GI ∈ PN(Θ), then the following statements
are true.

(i) Let K ∈ S(GI) and define Q = K(I−CBK)−1. Then
Q ∈ S(GI) and Qη = Ky for all ξ ∈ Ξ.

(ii) Let Q ∈ S(GI) and define K = (I+QCB)−1Q. Then
K ∈ S(GI) and Ky = Qη for all ξ ∈ Ξ.

We refer the reader to the Appendix for a proof of the
above proposition. Proposition 1 builds on Lemma 1 to reveal
that if the information structure is partially nested, then any
decentralized affine output feedback controller K ∈ S(GI)
can be transformed to an equivalent decentralized affine
purified output feedback controller Q ∈ S(GI) through an
invertible nonlinear transformation, and vice versa.

Proposition 2. Let Q∗ be an optimal solution to the follow-
ing optimization problem,

minimize E (x′Rxx+ u′Ruu)

subject to Q ∈ S(GI)
Fxx+ Fuu+ Fξξ ≤ 0

x = Bu+Gξ

u = QPξ

∀ ξ ∈ Ξ. (10)

Then K∗ = (I + Q∗CB)−1Q∗ is an optimal solution to
problem (9).

Proof: By Proposition 1, we have that for any Q ∈ S(GI),
K = (I + QCB)−1Q satisfies K ∈ S(GI). If Q∗ solves
problem (10), then by Proposition 1, K∗ = (I+Q∗CB)−1Q∗

is the affine output feedback controller that results in the
same sequence of control inputs as the affine purified output
feedback controller Q∗, so it is the optimal affine output
feedback controller. �

In the absence of constraints on the state and input
trajectories (i.e., Fx, Fu, Fξ = 0), problem (10) reduces to an
unconstrained convex quadratic program. Problem (10) is in
general, however, a semi-infinite convex quadratic program,
as it contains infinitely many linear constraints in Q. Given
our assumption that the set Ξ is described by finitely many
conic inequalities, one can use techniques grounded in duality
to show that problem (10) admits an equivalent reformulation
as a finite-dimensional conic optimization problem. The
underlying approach relies on arguments analogous to those
in [17], [18].

Proposition 3. An optimal solution to problem (10) can
be obtained by solving the following equivalent finite-
dimensional conic optimization problem,

minimize Tr (P ′Q′RQPM + 2G′RxBQPM +G′RxGM)

subject to Q ∈ S(GI)
Z ∈ Rm×Nξ , Λk ∈ RNξ×m, µ ∈ Rm

+

(Fu + FxB)QP + FxG+ Fξ + Z = 0,

Z = µe′1 +
∑̀
k=1

Λ′kWk,

Λk �K∗ 0, k = 1, . . . , `,
(11)

where R = Ru + B′RxB, and e1 = (1, 0, . . . , 0) is a unit
vector in RNξ .

The proof is straightforward, as it mirrors that of Proposi-
tion 3.2 in [18]. It is thus omitted due to space constraints.
We remark that the conic optimization problem (11) can be
efficiently solved for a wide range of cones K, including
polyhedral and second-order cones.

IV. A DUAL LOWER BOUND

The restriction to decentralized control policies that are
affine in the measured output will in general result in the
loss of optimality with respect to the original problem of
interest (7). That is to say that Jp ≥ J∗. In this section,
we offer a generalization of the lower bounding technique
in [18] to enable the efficient computation of a lower bound
on the optimal value J∗. With such bound in hand, one can
estimate the suboptimality incurred by any feasible decentral-
ized control policy. We begin this section by specifying the
calculation of this lower bound for problems with partially
nested information structures. In Section IV-B, we generalize
the lower bound to problems with nonclassical information
structures, through application of a minimal information
relaxation.

A. Partially Nested Information Structures

We require an additional assumption on the disturbance
process in order to derive the dual lower bound.

Assumption 1. The disturbance trajectory ξ is distributed
according to an elliptically contoured distribution.

The family of elliptically contoured distributions is broad.
It includes the multivariate Gaussian distribution, multivariate
t-distribution, their truncated versions, and uniform distri-
butions on ellipsoids. If ξ follows an elliptically contoured
distribution, then the conditional expectation of ξ given a
subvector of ξ, is affine in this subvector. And any linear
transformation of ξ also follows an elliptically contoured
distribution [27]. Such properties play an integral role in
the derivation of the lower bound on the optimal value
of problem (7), which we state formally in the following
result. Its proof is similar to that of Proposition 4.2 in [18],
with an important modification required to accommodate the
decentralization of information.



Proposition 4. Let Assumption 1 hold. If GI ∈ PN(Θ), then
the optimal value of the following problem is a lower bound
on the optimal value of problem (7):

minimize Tr (P ′Q′RQPM + 2G′RxBQPM +G′RxGM)

subject to Q ∈ S(GI), Z ∈ Rm×Nξ

(Fu + FxB)QP + FxG+ Fξ + Z = 0,

WkMZ ′ �K 0, k = 1, . . . , `,

e′1MZ ′ ≥ 0,
(12)

where R = Ru + B′RxB, and e1 = (1, 0, . . . , 0) is a unit
vector in RNξ .

Given an information graph GI , we denote by Jd(GI) the
optimal value of problem (12). It stands as a dual lower
bound on the optimal value of problem (7). Namely,

Jd(GI) ≤ J∗ ≤ Jp.

The reason for making explicit the dependency of Jd(GI)
on the information graph GI will be made apparent in the
sequel.

We have an immediate corollary to Propositions 3 and
4. In the absence of constraints on state or input, affine
policies are optimal for problem (7), assuming Assumption 1
to hold. The fact that affine policies are optimal for partially
nested LQG problems is a special case of Corollary 1.
Moreover, Corollary 1 recovers the classical result of Chu
[28], which proves optimality of affine policies for systems
with elliptically contoured disturbance distributions.

Corollary 1 (Optimality of Affine Policies). Let Assumption
1 hold. If GI ∈ PN(Θ) and Fx, Fu, Fξ = 0, then affine
policies are optimal for problem (7) and Jd(GI) = J∗ = Jp.

B. General Information Structures

We now construct a lower bound on J∗ for problems
with arbitrary information structures. Our approach is simple.
Given an arbitrary information graph GI , we identify the
smallest directed graph ĜI containing GI , such that ĜI ∈
PN(Θ). One can then apply the results of Proposition 4 to
obtain a valid lower bound Jd(ĜI) ≤ J∗. In a sense, this
approach amounts to constructing an information relaxation
to a partially nested structure that introduces the smallest
number of additional edges to the information graph. We
now describe an approach to constructing such information
relaxations. First, we require a nonrestrictive assumption.

Assumption 2. For any information graph GI = (V, EI) and
system Θ, we require that i ≺ i for all i ∈ V .

Assumption 2 essentially requires that the control input to
each subsystem will causally affect its own output. Given an
information graph GI and system Θ, we define the smallest
information relaxation yielding a partially nested information
structure as the optimal solution of the following problem:

minimize
G⊇GI

|E| subject to G ∈ PN(Θ), (13)

where G = (V, E), and |E| is the cardinality of the directed
edge set E . The containment condition G ⊇ GI requires that

any feasible solution G to problem (13) be a supergraph of
GI and have vertex set V = {1, . . . , N}.

The problem we consider in (13) is similar in spirit to
[29], which considers the problem of finding the smallest
relaxation of the information constraint which is quadrati-
cally invariant when the original problem may not be. When
the information constraint is defined in terms of sparsity
constraints on the measurements that each controller has
access to, the authors specify an iterative method that is
guaranteed to recover the minimal relaxation in a fixed
number of steps. Problem (13) admits an explicit solution.
We first require several definitions.

Definition 3 (Precedence Graph). The precedence graph
associated with the system Θ and the information graph GI is
defined as the directed graph GP (Θ,GI) = (V, EP (Θ,GI)),
whose directed edge set is defined as

EP (Θ,GI) := {(i, j) | i, j ∈ V, i ≺ j with respect to (Θ,GI)}.

Essentially, the precedence graph gives a directed graph-
ical representation of the precedence relations between all
subsystems, as specified in Definition 1.

Definition 4 (Transitive Closure). The transitive closure of
a directed graph G = (V, E) is defined as the directed graph
G = (V, E), where (i, j) ∈ E ⇐⇒ there exists a directed
path in G from node i to node j.

We remark that the transitive closure of a directed graph is
readily computed using Warshall’s algorithm [30]. Equipped
with these concepts, we have the following result, which
offers a ‘closed-form’ solution for problem (13).

Proposition 5 (Information Relaxation). Let Assumption 2
hold. The optimal solution to (13) is given by the transitive
closure of the precedence graph GP (Θ,GI).

While we omit the proof of Proposition 5 due to space
constraints, we mention that a key step in its derivation
involves showing that GI ∈ PN(Θ) if and only if it equals
the transitive closure of its precedence graph GP (Θ,GI) – a
result which is closely related to the necessary and sufficient
graph theoretic condition for quadratic invariance in [31].

Implicit in the statement of Proposition 5 is the fact that the
transitive closure of the precedence graph GP (Θ,GI) not only
yields a partially nested information relaxation, but also the
smallest such relaxation. A trivial consequence of Proposition
5 is that Jd

(
GP (Θ,GI)

)
≤ J∗, which is a valid lower bound

on the optimal value of a decentralized control problem with
arbitrary information graph GI .

V. CASE STUDY

Consider a linear time-invariant system consisting of N =
5 subsystems. Its information graph GI is depicted in Figure
1. One can easily show the information structure to be
partially nested, as GI = GP (Θ,GI).

The dimensions of the state and output variables are given
by nix = niy = 1 for all i = 1, . . . , N . The dimensions of the
input and disturbance variables are given by n1u = 2, n2u = 3,
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Fig. 1: The directed graph above depicts the information
graph GI of the test system. Although omitted, each node
is also assumed to possess a self-loop.

n3u = 2, n4u = 1, n5u = 1, and nξ = 10, respectively. The
system is described by the following set of matrices:

A(t) =


0.8 0 0 0 0

0 0.9 0 0 0

0.2 0.05 0.6 0 0

0 0.05 0 1 0

0 0 0.4 0 1

 ,

B(t) =


−1 −1 0 0 0 0 0 0 0

0 0 −1 −1 −1 0 0 0 0

0 1 0 1 0 −1 −1 0 0

0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 1 0 −1

 ,
C(t) = I5, G(t) =

[
I5 05×5

]
, H(t) =

[
05×5 I5

]
,

for all t = 0, . . . , T − 1, where I5 is the 5-by-5 identity
matrix, and 05×5 is a 5-by-5 matrix of all zeros. The
constraints on the state and input are defined as

‖x‖∞ ≤ 5 and ‖u‖∞ ≤ 2, ∀ ξ ∈ Ξ.

For a given time horizon T , the support Ξ of the disturbance
trajectory ξ is defined as

Ξ :=
{
ξ ∈ RNξ

∣∣ ‖ξ‖22 ≤ T + 1, ξ1 = 1
}
.

We assume that ξ has a uniform distribution over Ξ. It follows
that the distribution of ξ is elliptically contoured, and its
second moment matrix is given by

M = diag
(

1,
T

Nξ + 1
INξ−1

)
.

Finally, we define the system cost matrices by Rx =
diag(Rx(0), . . . , Rx(T )) and Ru = diag(Ru(0), . . . ,
Ru(T−1)), where Rx(t) = diag(5, 5, 15, 5, 15) and Ru(t) =
diag(1, 0.05, 1, 0.05, 0.05, 1, 0.05, 1, 1) for t = 0, . . . , T .

A. Numerical Results

We let the time horizon range from T = 5 to 10, and plot
the primal upper bound Jp and the dual lower bound Jd as a
function of the time horizon T in Figure 2. Roughly, both Jp

and Jd appear to grow linearly with the horizon T . Although
a clear gap is observed between the primal upper bound and
the dual lower bound, this gap is small relative to the dual
lower bound, indicating that affine control policies are close
to optimal for this particular problem instance.
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Fig. 2: A plot of the primal upper bound (Jp) and dual lower
bound (Jd) as a function of the horizon T .
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APPENDIX

A. Matrix Definitions

The block matrices (B,G,C,H) are given by:

B :=



0

A1
1B(0) 0

A2
1B(0) A2

2B(1) 0
...

. . .
... 0

AT1 B(0) AT2 B(1) · · · · · · ATTB(T − 1)



G :=


A0

0x(0)

A1
0x(0) A1

1G(0)

A2
0x(0) A2

1G(0) A2
2G(1)

...
...

. . .
AT0 x(0) AT1G(0) AT2G(1) · · · ATTG(T − 1)



C :=


0

C(0) 0
. . . . . .

C(T − 1) 0


H := diag(1, H(0), . . . ,H(T − 1)),

where Ats :=
∏t−1
r=sA(r) for s < t, and Att = I .

B. Proof of Lemma 1

We prove by induction in t that for any γ ∈ Γ(GI), zi(t)
and ζi(t) are functions of each other for all i = 1, . . . , N ,
t = 0, . . . , T − 1. For the base step t = 0, we have that
y(0) = η(0), so the above claim is true.

Assume that the claim is true for times 0, . . . , t − 1. We
now show that the claim is also true for time t. It suffices to
show that for all i ∈ {1, . . . , N} and k ∈ N−GI (i), yk(t) is a
function of ζi(t), and ηk(t) is a function of zi(t).

Using the definition of precedents, we can write yk(t) as

yk(t) =

t−1∑
s=0

∑
j: j≺i

[
C(t)Ats+1B(s)

]
kj
uj(s)

+ ηk(t).

(14)
for each i ∈ {1, . . . , N} and k ∈ N−GI (i). Hence, to show
that yk(t) is a function of ζi(t), it suffices to show that for
all j ≺ i and s ≤ t − 1, it holds that uj(s) is a function of
ζi(s). Since zj(s) is the information available to subsystem
j at time s, we have that uj(s) is a function of zj(s). And,
given the assumption that GI ∈ PN(Θ), we have that j ≺ i
indicates that zj(s) ⊆ zi(s). It follows that uj(s) is a function
of zi(s). Moreover, by the induction hypothesis, zi(s) is a
function of ζi(s) for s ≤ t − 1. It follows that uj(s) is a
function of ζi(s) for all j ≺ i and s ≤ t−1. This finishes the
proof that yk(t) is a function of ζi(t) for each i ∈ {1, . . . , N}
and k ∈ N−GI (i).

The proof that ηk(t) is a function of zi(t) for all i ∈
{1, . . . , N} and k ∈ N−GI (i) is identical. Hence, the claim is
also true for time t, which completes the proof by induction.

C. Proof of Proposition 1

We only prove part (i) of the proposition, as the proof for
part (ii) is identical. Let K ∈ S(GI) and define u = Ky for
all ξ ∈ Ξ. Using the fact that system trajectories are related
according to x = Bu+Gξ and y = Cx+Hξ, we have that

y = CBu+ (CG+H)ξ = CBKy + η.

It follows that η = (I − CBK)y. The controller u = Ky
can be rewritten as

u = K(I − CBK)−1η,

where the invertibility of (I − CBK) is guaranteed, since
CBK is strictly block lower triangular. Let Q = K(I −
CBK)−1. It follows that u = Ky = Qη for all ξ ∈ Ξ.

To show that Q ∈ S(GI), we note that Lemma 1 ensures
that zi(t) is a function of ζi(t) under any decentralized
controller γ ∈ Γ(GI). If u = Ky for some K ∈ S(GI),
then ui(t) is a function of zi(t), and hence a function of
ζi(t). Since Qη = Ky, we see that under the affine controller
u = Qη, ui(t) only depends on ζi(t), so Q ∈ S(GI).
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