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Abstract—We derive a new upper bound on the minimum rank
of matrices belonging to an affine slice of the positive semidefinite
cone, when the affine slice is defined according to a system of
sparse linear matrix equations. It is shown that a feasible matrix
whose rank is no greater than said bound can be computed in
polynomial time. The bound depends on both the number of
linear matrix equations and their underlying sparsity pattern.
For certain problem families, this bound is shown to improve
upon well known bounds in the literature. Several examples are
provided to illustrate the efficacy of this bound.

Index Terms—rank minimization, semidefinite programming,
sparse linear matrix equations, chordal graphs.

I. INTRODUCTION

Let R (resp. R+) denote the set of real (resp. nonnegative)
numbers and Sn (resp. Sn+) denote the space of all n × n
symmetric (resp. symmetric positive semidefinite) matrices.
Consider an affine subspace A, defined by

A := {X ∈ Sn | Tr(AiX) = bi, i = 1, . . . ,m}, (1)

where Ai ∈ Sn and bi ∈ R for all i = 1, . . . ,m. Given
an integer 1 ≤ r ≤ n, of general interest is the derivation
of conditions under which a matrix X ∈ A ∩ Sn+ satisfying
rank(X) ≤ r is guaranteed to exist and can be computed in
polynomial time.

A wide range of problems can be cast as rank minimization
problems over an affine slice of the positive semidefinite
cone. Examples include covariance estimation problems, and
k-means clustering problems [1]. In such examples, the min-
imum rank solution corresponds to the simplest model that
explains the observed data. A closely related class of problems
is that of minimizing the rank of a matrix over an affine
subspace of symmetric matrices. These so-called affine rank
minimization problems appear in collaborative filtering [2],
[3], quantum state tomography [4], cardinality minimization
[5], and matrix completion problems [6], [7], to name a few.
Fazel [8] shows that an affine rank minimization problem can
be equivalently reformulated as one of minimizing rank over
an affine slice of the positive semidefinite cone. However,

Supported in part by NSF grant ECCS-1351621, NSF grant CNS-1239178,
US DoE under the CERTS initiative, PSERC under sub-award S-52, and a
Postdoctoral Fellowship from the Atkinson Center for a Sustainable Future.

1R. Louca and E. Bitar are with the School of Electrical and Com-
puter Engineering, Cornell University, Ithaca, NY, 14853, USA. Emails:
rl553@cornell.edu, eyb5@cornell.edu

2S. Bose is with the Department of Electrical and Computer En-
gineering, University of Illinois, Champaign, IL, 61820, USA. Email:
boses@illinois.edu

computing a matrix of minimum rank in the affine slice
is known to be NP-hard [9]. A common approach to the
approximation of such problems entails the use of the nuclear
norm as a convex surrogate for rank. The resulting nuclear
norm minimization problem can be solved in polynomial time
using semidefinite programming. Furthermore, when the linear
map defining the affine subspace satisfies a certain null space
property, nuclear norm minimization is guaranteed to find
the minimum rank matrix in the affine slice. Certain random
ensembles of linear systems that arise in practice satisfy the
null-space property with high probability. For example, see [3],
[10]–[12]. Random subspaces drawn from such ensembles are
largely unstructured. A priori upper bounds on the minimum
rank of matrices in A∩Sn+ for unstructured A have appeared
in [13]–[16], among others.

Rank minimization problems arising in engineering applica-
tions often impose additional structures on A. For example,
system identification problems in control theory involve min-
imizing the rank of a Hankel matrix [17], [18]. See [19], [20]
for applications that involve optimization, more generally, over
patterned matrices such as Hankel, Toeplitz, Sylvester, etc.
Structured subspaces A also appear in applications where the
matrices defining A are sparse. The semidefinite relaxation of
the optimal power flow problem in power systems [21]–[23]
is one such example. More generally, there are a wide variety
of nonconvex optimization problems over graphs that can be
cast as sparse semidefinite programs with an additional rank
constraint. See, for example, [21], [23]–[29].

When seeking a low-rank solution, X , to a semidefinite
program, the authors in [30] advocate the use of first-order
methods over the low-rank matrix factorizations of X . Such
algorithms are demonstrably faster than interior-point methods
for solving semidefinite programs, especially when the weight-
ing matrices are sparse. Moreover, they are also proven to
converge to a local minimum of the rank-constrained variants
of the semidefinite program [31] with fast convergence rates
[32], [33]. Knowledge of an a priori upper bound on the
minimum attainable rank serves to reduce the search space
of the algorithms.

Contribution and Related Work: Our primary objective in this
paper is the derivation of upper bounds on the minimum rank
of matrices in A ∩ Sn+. There are two streams of prior work
in the literature, which are closely related. The first line of
research [13], [14] provides an upper bound based solely on
the dimension of A. The second body of work [23], [24]



leverages on the graph structure of underlying sparsity pattern
of the matrices defining A. Loosely speaking, our main result,
in Theorem 1, marries these two approaches.

Organization: We begin the paper with graph theoretic defini-
tions in Section II. In Section III, we summarize known upper
bounds on the minimum rank of matrices in A∩Sn+. Our main
result – providing a novel upper bound – is stated, derived,
and compared to known bounds in Section IV. In Section V,
we further investigate the bound when the collective sparsity
pattern of the matrices defining A is given by a chordal graph.
We conclude the paper with Section VI.

II. GRAPH THEORY PRELIMINARIES

We begin with several basic definitions from graph theory that
will prove useful in the sequel. Let G = (V, E) be a simple
undirected graph, where V := {1, . . . , n} denotes its vertex
set and E its edge set. For convenience, let |G| := |V|. We
say G1 is a subgraph of G2, denoted by G1 ⊆ G2, if the
inclusion relation holds for both the vertex and the edge sets
of the respective graphs. A cycle on k vertices in G is defined
as a k-tuple (n1, n2, . . . , nk), such that (n1, n2), (n2, n3),. . .,
(nk, n1) are edges belonging to E . A cycle (n1, n2, . . . , nk) in
G is said to be minimal if no strict subset of {n1, n2, . . . , nk}
defines a cycle in G.

Definition 1 (Chordal graph). A graph is said to be chordal
if all its minimal cycles have at most three nodes.1

For any graph G on n nodes, a graph H is said to be a chordal
extension of G, if H ⊇ G, and H is a chordal graph on
the same n nodes. Denote by C(G), the set of all chordal
extensions of G.

In the sequel, it will be of notational convenience to associate
with any graph G the index set I(G) defined as

I(G) := {(j, k) : j = k ∈ V or j < k, (j, k) ∈ E}. (2)

With a slight abuse of notation, we also define the index
set associated with a collection of graphs G1, . . . , Gp as
I(G1, . . . , Gp) := ∪pi=1I(Gi).
A. Maximal cliques

Let G be a simple undirected graph. It is said to be complete, if
every pair of nodes in the graph share an edge. A clique of G
is a complete subgraph of G. A clique is said to be maximal,
if it is not a subgraph of any other clique of G. Finally, a
clique is said to be a maximum clique if it contains the most
vertices among all cliques.

For a graph G, let K(G) denote the set of all maximal
cliques in G. For any maximal clique K ∈ K(G), denote
its complement by Kc := K(G) \ {K}. The clique number of
G is defined as

ω(G) := max
K∈K(G)

|K|.

1See [34]–[38] for a detailed survey on chordal graphs.
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(b) Graph G2

Fig. 1: G1 is not a chordal graph, while G2 is a chordal
extension of G1. The clique numbers of G1 and G2 are
ω(G1) = 2 and ω(G2) = 3, respectively.

In other words, ω(G) equals the number of vertices in a
maximum clique of G. Recall that C(G) denotes the set of all
chordal extensions of G. We remark that minH∈C(G){ω(H)−
1} is often called the treewidth of G.

Example 1. We illustrate several of the preceding definitions
using the chordal graph G2 in Figure 1. The set of all maximal
cliques of G2 is given by K(G2) = {K1,K2,K3}, where
K1 = {1, 2, 4}, K2 = {1, 3, 4}, and K3 = {3, 5}. For the
maximal clique K2 and its complement Kc

2 = {K1,K3}, we
have

I(K2) = {(1, 1), (1, 3), (1, 4), (3, 3), (3, 4), (4, 4)},

I(Kc
2) = {(1, 1), (1, 2), (1, 4), (2, 2),

(2, 4), (3, 3), (3, 5), (4, 4), (5, 5)}.

Moreover, G2 is a chordal extension of G1 with clique number
ω(G2) = 3.

III. KNOWN BOUNDS ON MINIMUM RANK

We now summarize two well known results from the literature,
which provide upper bounds on the minimum rank of matrices
in A ∩ Sn+. These results will play a central role in the
derivation of our main result in Theorem 1.

A. The Role of Convex Geometry

The authors in [13]–[16], [39] provide an upper bound on
the minimum rank of matrices belonging to A ∩ Sn+, as a
function only of the number of constraints m defining the
affine subspace A. We require some basic notation to present
these results. For any positive integer n, let n2 denote the
dimension of the space Sn, given by

n2 := n(n+ 1)/2.

Also, define the function

2
√
x :=

⌊√
8x+ 1− 1

2

⌋
for x ∈ R+. Here, 2

√
x = byc, where y is the positive real

root of x = y2. It is also straightforward to verify that for
any positive integer n, we have

2
√
n2 = n. Equipped with this

notation, we now summarize the main result of [13], [14],
[39], [40] in the following proposition.



Proposition 1. If A ∩ Sn+ is nonempty, then there exists a
matrix X ∈ A ∩ Sn+ satisfying

rank(X) ≤ 2
√
m.

Moreover, such a matrix X can be computed in polynomial
time.

A detailed proof for existence, relying only on the convex
geometry of the positive semidefinite cone, can be found
in [41]. An alternative proof based on nondegeneracy and
complementarity conditions for semidefinite programs can be
found in [15]. The reader may refer to [16] for the specification
of a polynomial time algorithm to compute such matrices.

The upper bound in Proposition 1 is known to be tight. That
is to say, for every m ≤ n2, there exists an affine subspace
A defined according to (1) such that rank(X) ≥ 2

√
m for all

X ∈ A ∩ Sn+. Thus, the upper bound in Proposition 1 cannot
be improved without imposing additional conditions on A.
Examples of such refinements can be found in [16] and the
references therein.

B. The Role of Sparsity

The bound on minimum rank presented in Proposition 1
depends only on the number of constraints used in defining
the affine subspace A. In Proposition 2, we present a comple-
mentary result that specifies an upper bound on the minimum
rank of matrices belonging to A ∩ Sn+, as a function only
of the sparsity pattern of the weighting matrices A1, . . . , Am
definingA. In the following definition, we formalize the notion
of sparsity by defining a graph whose edges reflect the nonzero
entries associated with a collection of symmetric matrices.

Definition 2. The collective sparsity pattern of the weighting
matrices A1, . . . , Am ∈ Sn characterizing the affine subspace
A in (1) is defined by a simple undirected graph GA = (V, E),
where V := {1, . . . , n} and

E := {(j, k) : j 6= k, [Ai]jk 6= 0 for some i = 1, . . . ,m}.

Essentially, GA contains only those edges which correspond
to the nonzero entries of the matrices in the collection
A1, . . . , Am. Of particular interest are matrices whose col-
lective sparsity pattern defines a chordal graph. The following
proposition specifies an upper bound on the minimum rank of
matrices in A ∩ Sn+, when GA is a chordal graph. The result
follows from arguments in [25], [42], [43]

Proposition 2. If A ∩ Sn+ is nonempty and GA is a chordal
graph, then there exists a matrix X ∈ A ∩ Sn+ satisfying

rank(X) ≤ ω(GA).

Moreover, such a matrix X can be computed in polynomial
time.

Proposition 2 is a special case of Lemma 5.2.8 in [24], where
the authors show that a matrix X ∈ A ∩ Sn+ satisfying

rank(X) ≤ ω(GA) exists for arbitrary graphs GA. The result
of Proposition 2 relies critically on the assumption that the
graph GA is chordal to ensure that such a matrix can be
computed in polynomial time. When GA is not chordal,
one can replace ω(GA) in Proposition 2 with ω(H) for
any H ∈ C(GA), where recall that C(GA) denotes the set
of all chordal extensions of GA. The problem of finding a
chordal extension with the smallest clique number is, however,
NP-complete in general. One can rely instead on chordal
extensions of GA that can be computed in polynomial time.
We refer the reader to [44, Chapter 18] for one such method.

IV. MAIN RESULT

We now present our main result in Theorem 1, which combines
insights from both Propositions 1 and 2. Given any set of
indices I ⊆ {(j, k) : 1 ≤ j ≤ k ≤ n}, define µA(I) as

µA(I) := |{i ∈ {1, . . . ,m} : [Ai]jk 6= 0 for some (j, k) ∈ I}|.

Essentially, µA(I) equals the number of constraints whose
weighting matrices have nonzero entries at indices in I.

Theorem 1. Let H be a chordal extension of GA, the
collective sparsity pattern of A. For each maximal clique
K ∈ K(H), define

mK := µA(I(K) \ I(Kc)) + |I(K) ∩ I(Kc)|. (3)

If A∩Sn+ is nonempty, then there exists a matrix X ∈ A∩Sn+
satisfying

rank(X) ≤ ρA(H),

where

ρA(H) := max
K∈K(H)

min {|K|, 2
√
mK} . (4)

Moreover, such a matrix X can be computed in polynomial
time.

A proof sketch is provided in Section IV-A. Here, we offer
a brief discussion of the result. If the weighting matrices
defining the affine subspace A are dense (i.e., all elements are
nonzero), then the associated graph GA equals the complete
graph. For dense systems, it holds that ρA(GA) = 2

√
m.

In other words, when the weighting matrices are dense, we
recover the upper bound in Proposition 1. Now, consider
an affine subspace A defined by sparse weighting matrices
for which the associated graph GA is chordal. It follows
from Theorem 1 that ρA(GA) is a valid upper bound on the
minimum rank of matrices in A∩Sn+. And, it is easy to check
that ρA(GA) ≤ ω(GA). In essence, we recover the upper
bound in Proposition 2, in this case. In general, however, one
cannot compare 2

√
m and ρA(H) given an arbitrary chordal

extension H ∈ C(GA).

Corollary 1. If A ∩ Sn+ is nonempty, then there exists X ∈
A ∩ Sn+, such that rank(X) ≤ ρ∗A, where

ρ∗A := min
H∈C(GA)

ρA(H).



Corollary 1 generalizes both Propositions 1 and 2 in that ρ∗A ≤
min{ω(GA), 2

√
m} for all affine subspaces A having a graph

GA that is chordal. However, the gain in generality is offset
by the loss of a polynomial time guarantee for construction,
as calculating an optimal chordal extension H ∈ C(GA) – one
that minimizes ρA(H) – appears to be an intractable problem.
Intuitively, one expects that computing ρ∗A should be as hard as
minimizing ω(H) = maxK∈K(H) |K| over H ∈ C(GA). The
optimal value of the latter problem is precisely equal to one
plus the treewidth of GA. And, computing the treewidth of an
arbitrary graph is known to be NP-complete [45]. This does
not, however, preclude the possibility of identifying natural
families of systems for which optimizing ρA over C(GA) is
tractable. We discuss such issues in Section V.

A. A Proof Sketch of Theorem 1

A detailed proof of the result is not included in this paper,
but we outline the key steps involved in the remainder of this
section. Central to our proof is a technical result presented
in Lemma 1. Its statement requires the following additional
notation.

For a simple undirected graph G = (V, E) having vertices V =
{1, . . . , n}, define a G-partial matrix XG as a collection of
real numbers, indexed by the set I(G), where I(G) is defined
in (2). With a slight abuse of notation, also identify XG with
a partially filled symmetric matrix, where [XG]kj = [XG]jk
for each (j, k) ∈ I(G). When G is the complete graph on
n nodes, a G-partial matrix is an n × n symmetric matrix.
For any graph H ⊆ G, let XG(I(H)) denote the restriction
of XG to the indices in I(H). If K is a maximal clique, i.e.,
K ∈ K(G), then XG(I(K)) can be identified with a |K|×|K|
symmetric matrix.

Definition 3 (Matrix completion). A matrix X ∈ Sn is said to
be a completion of a G-partial matrix XG, if X(I(G)) = XG.

The proof of Theorem 1 relies on the following result, a formal
proof of which is omitted due to space constraints. We remark
that [24, Lemma 2.3.11], [25], [43] form the crux of the proof
of this lemma.

Lemma 1. Let G be a chordal graph and XG a G-partial
matrix, such that XG(I(K)) ∈ S

|K|
+ and rank(XG(I(K)) ≤

r for each K ∈ K(G). Then, there exists a completion X of
XG, such that X ∈ Sn+ and rank(X) ≤ r. Moreover, X can
be computed from XG in polynomial time.

Equipped with this result, we now outline the proof of Theo-
rem 1. First, let Z ∈ A∩Sn+. One can compute such a matrix
in polynomial time by solving a semidefinite program. We use
Z to construct an H-partial matrix XH , where finding XH(K)
amounts to solving a semidefinite feasibility problem for
each maximal clique K ∈ K(H). The semidefinite program
associated with each clique K has mK linear constraints,
where mK is defined as in (3). Invoking Proposition 1, a
positive semidefinite matrix XH(I(K)) satisfying the mK

linear constraints with

rank(XH(I(K))) ≤ 2
√
mK

exists and can be computed in polynomial time. Also,
rank(XH(I(K))) ≤ |K|. Furthermore, H has at most n
maximal cliques, which can be listed in polynomial time.
Hence, XH can be constructed in polynomial time. Lemma
1 then implies that XH can be completed to X ∈ Sn+ in
polynomial time, where rank(X) is bounded from above by
ρA(H) in (4). Finally, our construction of XH from Z is such
that its completion satisfies X ∈ A.

V. CHORDALLY SPARSE LINEAR SYSTEMS

We devote this section to linear systems for which the graph
GA associated with the affine subspace A is chordal. For such
systems, it follows from Theorem 1 that ρA(GA) stands as an
upper bound on the minimum rank of matrices in A ∩ Sn+.
Also, it is straightforward to show that ρA(GA) ≤ ω(GA).
While it is not true, in general, that ρA(GA) ≤ 2

√
m, we

provide examples of subspaces A in Section V-A, for which
it holds that ρA(GA) < 2

√
m. In Section V-B, we provide an

example of subspace where the inequality is reversed. We use
this example to motivate the derivation of a simple method to
compute a matrix in A∩Sn+, in polynomial time, whose rank
is no greater than min{ρA(GA), 2

√
m}.

A. The case of H = GA

Here, we offer two examples, where the bound obtained from
Theorem 1 strictly improves upon the bounds obtained from
both Propositions 1 and 2.

Example 2. Let n = 12, and suppose that A is defined
by m = 30 linear equations. Further, suppose that GA
is given by the chordal graph in Figure 2. It follows that
K(GA) = {K1,K2}, where |K1| = 8 and |K2| = 6. Also,
|I(K1) ∩ I(K2)| = 3. One can suitably choose the weighting
matrices to ensure µA(I(K1) \ I(K2)) ≤ 24, imlpying

min
{
|K1|, 2

√
mK1

}
= min

{
8,

2
√
27 = 6

}
= 6.

Also, min
{
|K2|, 2

√
mK2

}
≤ 6, and hence, we have

ρA(GA) = 6. For the same example, 2
√
m = 2

√
30 = 7, and

ω(GA) = 8. Thus, Theorem 1 with H = GA sharpens the
upper bound obtained from both Propositions 1 and 2.

Example 3. Consider a tree (connected acyclic graph) Tn on
n nodes, labelled 1, . . . , n. Let N (i) define the set of nodes
neighboring node i in Tn. Denote by dmax(Tn), the maximum
degree of a node in Tn, i.e., the maximum of |N (i)| over i
in Tn. Next, consider an affine subspace A defined by m = n
linear matrix equations as in (1), where the weighting matrix
Ai has the property that [Ai]jk 6= 0 if and only if j and k
both belong to {i} ∪N (i). Then, the associated graph GA is
chordal. For this linear system, it can be shown that ρA(GA)
satisfies

ρA(GA) ≤ 2
√

3dmax(Tn) + 2.
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Fig. 2: The sparsity pattern of a 12-node chordal graph G for Example 2. The two maximal cliques are represented as principal
minors of a G-partial matrix on the right.

The proof is omitted due to space constraints. To compare
ρA(GA) with the bounds from Propositions 1 and 2, notice
that ω(GA) = dmax(Tn) + 1 and 2

√
m = 2

√
n. Our aim is

to compare the bounds when Tn is uniformly sampled from
the set of all nn−2 trees on n labeled nodes in the large
graph limit, i.e., as n → ∞. To that end, Theorem 3 in [46]
implies that dmax(Tn) scales asymptotically almost surely as
log n/ log logn. As a result, both ratios ρA(GA)

ω(GA) and ρA(GA)
2
√
n

almost surely vanish as n → ∞. In other words, the upper
bound obtained using ρA(GA) far outperforms the bounds
from both Propositions 1 and 2 in the large graph limit for
this family of problems.

B. The general case of H ⊇ GA

For a chordally sparse linear system defined by an affine
subspace A, the bound obtained from Proposition 1 may be
tighter than ρA(GA). However, there always exists a chordal
extension H of GA for which ρA(H) is at least as tight as
the bound from Proposition 1, as in the following example.

Example 4. Consider the chordal graph G on n = 26 nodes,
whose maximal cliques are described as follows. Suppose
K(G) = {K1,K2,K3}, where K1 = {1, . . . , 13}, K2 =
{3, . . . , 15}, and K3 = {14, . . . , 26}. Further, suppose that
the affine subspace A is defined by m = 15 linear matrix
equations. Choose the weighting matrices such that only the
I(Kc

3) \ I(K3) entries in Ai are nonzero for i = 1, . . . , 5.
Also, only the I(Kc

1) \ I(K1) entries are nonzero in Ai for
i = 6, . . . , 15. It is easy to verify that GA = G. For this
example, we have 2

√
m = 5 < ρA(GA) = 12. Now, consider

the chordal extension H of GA with two maximal cliques,
comprising the nodes {1, . . . , 15} and {14, . . . , 26}, respec-
tively. One can verify that ρA(H) = 4 < min{ρA(GA), 2

√
m}.

Ideally, one would like to compute the optimal chordal exten-
sion H of GA for which ρA(H) = ρ∗A. Its calculation appears
to be intractable, however. Hence, we resort to computing an
upper bound on the minimum rank by restricting ourselves to
a smaller collection of chordal extensions of GA. By doing so,
we are able to compute an upper bound in polynomial time
that does not exceed min{ω(GA), 2

√
m}.

A polynomial time computable upper bound: Suppose GA is a
chordal graph on n nodes for an affine subspace A. It follows
from [38, Lemma 6], [25, Lemma 4] that there exists a finite
sequence of chordal graphs GA = G0 ⊆ G1 ⊆ . . . ⊆ G`,
where G` is the complete graph on n nodes, and each member
in the sequence differs from the one preceding it by exactly
one edge (cf. Appendix A). Define H := {G0, . . . , G`}. Now,
|H| is bounded by the maximum number of edges in an n-
node graph, i.e., |H| ≤ 1

2n(n+1), implying minH∈H ρA(H)
can be computed in polynomial time. Furthermore, H contains
GA and the complete graph on n nodes, and hence,

min
H∈H

ρA(H) ≤ min{ρA(GA), 2
√
m} ≤ min{ω(GA), 2

√
m}.

VI. CONCLUSION

In this paper, we derive a novel upper bound (cf. Theorem
1) on the minimum rank of matrices belonging to an affine
slice of the positive semidefinite cone, when the weighting
matrices defining the affine subspace are sparse. When the
collective sparsity pattern of the weighting matrices defining
the affine subspace is given by a chordal graph, our upper
bound depends on: (1) the sizes of the maximal cliques of
that graph and the maximal overlap among them, and (2) how
the sparsity pattern of individual weighting matrices distributes
across the maximal cliques of that graph. When the graph is
not chordal, the bound relies on a chordal extension of the
above graph.
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APPENDIX

A. Constructing a sequence of chordal extensions

Let G0 be a chordal graph on n nodes. Here, we provide a
polynomial time algorithm to construct a sequence of chordal
graphs G1, . . . , G`, that satisfies G0 ⊆ G1 ⊆ . . . ⊆ G`,
where G` is the complete graph on n nodes. Each graph
in the sequence differs from the one preceding it by one
edge. Construct a so-called perfect elimination ordering (PEO)
of G0 in polynomial time. See [47] for the definition and
a polynomial time construction of a PEO for a chordal
graph. Call this sequence v1, . . . , vn. Find the highest index
i ∈ {1, . . . , n}, such that the induced subgraph of G0 on the
nodes {vi, . . . , vn} is not a clique. Then, find the smallest
index j ∈ {i+1, . . . , n}, such that (i, j) is not an edge in G0.
Add the edge (i, j) to G0 to obtain G1. One can verify that
v1, . . . , vn is also a PEO of G1. Repeat the process to add an
edge to G1, and so on.
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