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Abstract— The increasing prevalence of electric vehicles
(EVs) in the transportation sector will introduce a large number
of highly flexible electric loads that EV aggregators can pool and
control to provide energy and ancillary services to the wholesale
electricity market. To integrate large populations of EVs into
electricity market operations, aggregators must express the
aggregate flexibility of the EVs under their control in the
form of a small number of energy storage (battery) resources
that accurately capture the supply/demand capabilities of the
individual EVs as a collective. To this end, we propose a novel
multi-battery flexibility model defined as a linear combination
of a small number of base sets (termed batteries) that reflect the
differing geometric shapes of the individual EV flexibility sets,
and suggest a clustering approach to identify these base sets.
We study the problem of computing a multi-battery flexibility
set that has minimum Hausdorff distance to the aggregate
flexibility set, subject to the constraint that the multi-battery
flexibility set be a subset of the aggregate flexibility set. We
show how to conservatively approximate this problem with
a tractable convex program, and illustrate the performance
achievable by our method with several numerical experiments.

I. INTRODUCTION

The growing adoption of electric vehicles (EVs) will
sharply increase peak electricity demand, stressing both the
electric power distribution and transmission systems if left
unmanaged [1]–[3]. However, a growing number of field
studies have shown EV charging requirements in residential
and workplace environments to be highly flexible in the
sense that most EVs remain connected to their chargers
far longer than the amount of time required to satisfy their
energy needs [4]–[6]. Given access to bidirectional charging
infrastructure, the charging flexibility of many EVs can be
centrally aggregated and dispatched to provide energy and
ancillary services to the wholesale electricity market, which
has been made possible by FERC Order No. 2222 [7].

Since it would be impractical and computationally in-
tractable for an independent system operator to individually
dispatch each EV load seeking to participate in the wholesale
electricity market, the flexibility of individual EVs must
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be aggregated. In particular, under current market rules, an
EV load aggregator participating in the wholesale electricity
market must express the aggregate flexibility of the EVs
under its command as a single equivalent energy storage
resource. These equivalent representations are typically de-
fined in terms of time-varying upper and lower bounds on the
aggregate charging/discharging power and aggregate state-of-
charge of the collective [8], [9]. Characterizing the aggregate
flexibility set associated with a collection of EVs requires
the calculation of the Minkowski sum of the individual EVs’
flexibility sets, which are typically expressed as convex poly-
topes in half-space representation. As the exact calculation
of such Minkowski sums is known to be computationally
intractable in general [10], [11], many existing methods in
the literature provide inner approximations of the aggregate
flexibility set [12]–[18]. Inner approximations are desirable
as they are guaranteed to only contain feasible points.

A. Related Literature and Contribution

There is a family of related methods in the literature
that build inner approximations to the individual flexibility
sets, utilizing specific geometries for the individual inner
approximations which enable their efficient summation to
yield an inner approximation to the aggregate flexibility set.
The inner approximations to the individual flexibility sets
utilized by these methods are expressed as transformations of
a common polyhedral set (termed the base set). For example,
Müller et al. [14] use a specific class of zonotopes (a family
of centrally symmetric polytopes) to internally approximate
each individual flexibility set. Zhao et al. [16] utilize ho-
mothetic transformations (dilation and translation) of a user-
defined convex polytope. This approach was later extended
by Al Taha et al. [19] to construct inner approximations via
general affine transformations of a given convex polytope.
Nazir et al. [17] provide a method to internally approximate
the individual flexibility sets using unions of homothetic
transformations of axis-aligned hyperrectangles. While all of
the approximating sets provided by these methods have the
property that their Minkowski sum can be easily calculated
or internally approximated, their reliance on transformations
of a single base set may result in overly conservative ap-
proximations of the aggregate flexibility set when there is
significant asymmetry and/or heterogeneity in the shapes of
the individual flexibility sets.

To limit this conservatism, we propose a novel multi-
battery flexibility model that consists of a weighted sum
of a small number of base sets that can better capture
the differing geometric shapes of the individual flexibility
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sets, allowing a trade-off between model complexity and
fidelity. Using this framework, we study the problem of
computing an optimal multi-battery flexibility set that has
minimum Hausdorff distance to the aggregate flexibility set,
subject to the constraint that the multi-battery flexibility
set be contained within the aggregate flexibility set. While
this problem is shown to be computationally intractable, we
provide a conservative approximation in the form of a convex
program whose size scales polynomially with the number and
dimension of the individual flexibility sets and base sets. An
advantage of using this model is that aggregate power profiles
in the multi-battery set can be efficiently decomposed into
individually feasible charging profiles for each EV using
an affine mapping obtained as a byproduct of solving the
proposed convex program. We also suggest a clustering
approach to identifying the base sets used in the multi-
battery approximation to ensure that the different geometries
of the individual sets are captured. We conduct experiments
to illustrate the improvement in performance that can be
achieved in going from a single base set to multiple base
sets using the multi-battery approximation method proposed
in this paper.

B. Notation

We employ the following notational conventions through-
out the paper. Let R denote the set of real numbers. We
denote the indicator function of set S by 1{x ∈ S} = 1
if x ∈ S and 1{x ∈ S} = 0 if x /∈ S . We denote the
n × n identity matrix by In. Given a pair of matrices
A and B of appropriate dimension, we let diag(A, B)
and (A, B) denote the matrices formed by stacking A
and B block-diagonally and vertically, respectively. Unless
stated otherwise, we let ‖ · ‖ denote an arbitrary norm and
‖ · ‖∗ its corresponding dual norm. The Hausdorff distance
between two sets X,Y ⊆ Rn is defined as dH(X, Y) :=
max

{
supx∈X infy∈Y ‖x− y‖, supy∈Y infx∈X ‖y − x‖

}
. We

refer to convex polytopes in half-space representation as H-
polytopes and to affine transformations of H-polytopes as
AH-polytopes.

C. Paper Organization

The remainder of the paper is organized as follows. In
Section II, we introduce the multi-battery flexibility model
and state the problem addressed in this paper. In Section III,
we provide a clustering approach to identifying the base
sets employed in the multi-battery flexibility model. In
Section IV, we develop a scalable convex optimization model
to compute multi-battery approximations. Numerical exper-
iments are provided in Section V and Section VI concludes
the paper.

II. PROBLEM FORMULATION

In this section, we present the EV flexibility set model
and formulate the problem of computing optimal inner
approximations of an aggregate flexibility set using multi-
battery flexibility sets.

A. EV Charging Dynamics
Consider a population of N EVs indexed by i ∈ N :=

{1, . . . , N}. Time is discretized into periods of equal length
δ > 0 and indexed by t ∈ T := {0, . . . , T −1}. We let ui(t)
denote the charging rate (kW) of EV i ∈ N at time t ∈ T ,
and ui := (ui(0), . . . , ui(T − 1)) ∈ RT its charging profile.
Given a charging profile ui, the cumulative energy (kWh)
supplied to each EV i ∈ N is assumed to evolve according
to the difference equation

xi(t+ 1) = xi(t) + ui(t)δ, t ∈ T , (1)

where xi(0) = 0. We denote the resulting cumulative energy
profile by xi = (xi(1), . . . , xi(T )) ∈ RT , which satisfies the
relationship

xi = Lui,

where L ∈ RT×T is a lower triangular matrix given by
Lij := δ for all j ≤ i.

B. Individual and Aggregate Flexibility Sets
The individual flexibility set associated with each EV i ∈

N is defined as the set of all admissible charging profiles,
denoted by

Ui :=
{
u ∈ RT |Hu ≤ hi

}
, (2)

where H := (L,−L, IT ,−IT ) and hi := (xi,−xi, ui,−ui).
The vectors ui, ui ∈ RT represent minimum and maximum
power limits on the charging profile, respectively. The vectors
xi, xi ∈ RT represent minimum and maximum energy limits
on the cumulative energy profile, respectively. We assume
that every individual flexibility set is nonempty. Flexibility
sets of the form (2) are compact, convex polytopes which
are commonly referred to as generalized or virtual battery
models in the literature [13], [16].

Remark 1 (Alternative representation). An individual flex-
ibility set can be equivalently represented in terms of the
corresponding set of cumulative energy profiles, given by

Xi := LUi = {x ∈ RT |HL−1x ≤ hi}.

These alternative representations may be advantageous from
a computational perspective, as the matrix HL−1 is much
sparser than the matrix H .

We define the aggregate flexibility set of a population of
EVs as the Minkowski sum of the individual flexibility sets,
denoted by

U :=
∑
i∈N

Ui. (3)

Computing the Minkowski sum of multiple H-polytopes is
NP-hard in general [20]. We note that it is straightforward to
construct an outer approximation of the aggregate flexibility
set by simply adding the right-hand side vectors of the
individual flexibility sets, i.e., it can be shown that U ⊆ {u ∈
RT |Hu ≤

∑
i∈N hi}. Since outer approximations may

contain infeasible aggregate charging profiles, this motivates,
in part, the need for efficient methods to construct accurate
inner approximations.



C. Multi-Battery Flexibility Set

Acknowledging the difficulty in characterizing the aggre-
gate flexibility set via exact Minkowski sum computation,
our primary objective in this paper is to develop an efficient
convex optimization based method to compute accurate inner
approximations of the aggregate flexibility set.

Recognizing that the individual flexibility sets can differ
greatly in terms of shape, we seek to approximate their
Minkowski sum by the weighted aggregation of a much
smaller number of K � N virtual batteries (as defined in
(2)) that effectively capture these different shapes. We refer
to these representative sets as the base sets and denote them
by

Bk := {u ∈ RT |Hu ≤ bk}, k ∈ K,

where K := {1, . . . ,K} and bk ∈ R4T denotes the right-
hand side data of each base set. In Section III, we suggest a
clustering approach to constructing the base sets in a manner
that seeks to capture the different geometries of the individual
flexibility sets.

We refer to a weighted combination of these sets as a
multi-battery flexibility set, defined as

B := µ+
∑
k∈K

σkBk, (4)

where µ ∈ RT denotes a translation vector, and σk ∈ R+

denotes the scaling factor applied to the k-th base set for
k = 1, . . . ,K. We note that homothetic transformations of
the individual base sets Bk preserve their battery structure
since the transformed base sets can be written as

β + αBk =
{
u ∈ RT |Hu ≤ Hβ + αbk

}
, (5)

for any translation β ∈ RT and scaling α ∈ R+. Conse-
quently, a multi-battery flexibility set can be interpreted as
the aggregation of K virtual batteries.

D. Approximating the Aggregate Flexibility Set

Given a collection of individual flexibility sets U1, . . . ,UN

and base sets B1, . . . ,BK , we seek to compute a multi-
battery flexibility set B that has minimum Hausdorff distance
to the aggregate flexibility set, subject to the requirement
that it be contained within the aggregate flexibility set.
This can be expressed according to the following polytope
containment problem:

minimize dH(B, U) subject to B = µ+
∑
k∈K

σkBk ⊆ U,

(6)

where the optimization variables are µ ∈ RT and σk ∈ R+

for k = 1, . . . ,K. We refer to this problem as the multi-
battery approximation problem. In Section IV, we discuss
the hardness of this optimization problem, and suggest an
approach to conservatively approximate problem (6) by a
convex program. In Section III, we first propose a clustering
method to compute the base sets which parameterize the
multi-battery flexibility set.

III. CLUSTERING FLEXIBILITY SETS

In this paper, we adopt a clustering-based approach to
constructing the base sets B1, . . . ,BK utilized in the multi-
battery model (4). We partition the individual flexibility sets
into K clusters C1, . . . , CK ⊂ N , where flexibility sets
belonging to the same cluster are more similar to each other
than to flexibility sets belonging to other clusters. More
formally, using the squared Hausdorff distance as a measure
of similarity between flexibility sets, we seek to solve the
following clustering problem

minimize
∑
k∈K

∑
i∈Ck

dH(Ui, Bk)2 (7)

with respect to the optimization variables Ck and Bk for k =
1, . . . ,K.

While natural to state, the polytope clustering problem (7)
is computationally intractable to solve, in part because it is
NP-hard to compute the Hausdorff distance between two H-
polytopes [21]. To address this issue, we utilize the Lipschitz
continuity of H-polytopes (with respect to perturbations in
the right-hand side data) to construct a tractable alternative
for the clustering problem (7), which can be solved using
standard clustering algorithms from the literature. The fol-
lowing result taken from [22, Theorem 2.4] provides a sharp
characterization of Lipschitz constants for H-polytopes.

Lemma 1. Let X = {x ∈ Rn |Ax ≤ bx} and Y = {y ∈
Rn |Ay ≤ by} be nonempty and compact H-polytopes. If
‖ · ‖p, ‖ · ‖q are two arbitrary norms and dH(·, ·) is the
Hausdorff metric induced by the norm ‖ · ‖p, then

dH(X, Y) ≤ L(A)‖bx − by‖q,

where

L(A) := sup

‖x‖q∗
∣∣∣∣∣∣∣∣
‖A>x‖p∗ = 1; x ≥ 0; the rows
of A corresponding to nonzero
components of x are linearly
independent.

 .

(8)

Using Lemma 1, we can upper bound the clustering loss
function in (7) by∑

k∈K

∑
i∈Ck

dH(Ui, Bk)2 ≤ L(H)2
∑
k∈K

∑
i∈Ck

‖hi − bk‖22,

where the upper bound is specified in terms of the Euclidean
norm. Utilizing this upper bound as a surrogate for the
original clustering loss function, we arrive at the following
K-means clustering problem in the right-hand side data of
the individual flexibility sets: partition the right-hand side
data {hi}Ni=1 into K clusters C1, . . . , CK to minimize the
within-cluster variation

minimize
∑
k∈K

∑
i∈Ck

‖hi − bk‖22, (9)

where bk is the mean of the elements belonging to the k-th
cluster, which is given by

bk :=
1

|Ck|
∑
i∈Ck

hi (10)



for k = 1, . . . ,K. Although the K-means clustering problem
is known to be NP-hard [23], there are a number of algo-
rithms, such as Lloyd’s algorithm [24], that can be utilized
to efficiently compute suboptimal solutions.

We note that, given any clustering of the individual flex-
ibility sets, the base sets {Bk}k∈K defined by right-hand
side vectors given by the corresponding centroids in (10)
are guaranteed to be nonempty. This follows from the fact
(which is straightforward to verify) that

1

|Ck|
∑
i∈Ck

Ui ⊆ Bk (11)

for all k ∈ K. In other words, for each cluster Ck, the
corresponding base set Bk is guaranteed to be an outer
approximation of the Minkowski average of the individual
flexibility sets belonging to that cluster. Thus, nonemptiness
of the individual flexibility sets guarantees nonemptiness of
the base sets for any clustering.

We also note that for K = 1, the base set obtained by this
method corresponds to the base set originally proposed in
[16] and later considered by [19] for single-battery approx-
imations of aggregate flexibility sets.

IV. MULTI-BATTERY APPROXIMATION

The multi-battery approximation problem (6) is compu-
tationally intractable to solve for two fundamental reasons.
First, calculating the Hausdorff distance between Minkowski
sums of H-polytopes is NP-hard in general [21]. Second, ver-
ifying the containment of a Minkowski sum of H-polytopes
in the Minkowski sum of another set of H-polytopes is
an NP-complete problem [20]. In Sections IV-A and IV-
B, we address these computational issues by conservatively
approximating both the containment condition and objective
function to yield a convex programming inner approximation
to the multi-battery approximation problem (6). In Section
IV-C, we show how to efficiently disaggregate any element in
the multi-battery flexibility set into a collection of elements
belonging to the individual flexibility sets.

A. Approximating the Containment Condition: B ⊆ U

We begin by providing a sufficient condition for the
containment of a multi-battery set B within the aggregate
flexibility set U. In short, Proposition 2 replaces the original
set containment constraint µ+

∑
k∈K σkBk ⊆

∑
i∈N Ui with

a more conservative collection of individual flexibility set
containment constraints given by γi +

∑
k∈K Γk,iBk ⊆ Ui

for i = 1, . . . , N . The key simplifying element in Proposition
2 is that each of these individual set containment conditions
only involves a single H-polytope on the right-hand side,
rather than a Minkowski sum of H-polytopes.

Proposition 2. It holds that µ +
∑

k∈K σkBk ⊆ U if there
exist γi ∈ RT and Γk,i ∈ RT×T for i = 1, . . . , N and

k = 1, . . . ,K such that

µ =
∑
i∈N

γi, (12)

σkIT =
∑
i∈N

Γk,i, ∀ k ∈ K, (13)

γi +
∑
k∈K

Γk,iBk ⊆ Ui, ∀ i ∈ N . (14)

Proof. The desired result follows from the following string
of inclusions:

µ+
∑
k∈K

σkBk
(a)
=
(∑

i∈N
γi

)
+
∑
k∈K

(∑
i∈N

Γk,i

)
Bk

(b)

⊆
∑
i∈N

(
γi +

∑
k∈K

Γk,iBk

)
(c)

⊆
∑
i∈N

Ui

= U.

Equality (a) follows from a direct substitution according
to the conditions (12)-(13). Inclusion (b) follows from the
fact that any element belonging to the set (

∑
i∈N γi) +∑

k∈K(
∑

i∈N Γk,i)Bk can be expressed as the sum of el-
ements belonging to the sets γi +

∑
k∈K Γk,iBk for i =

1, . . . , N . Inclusion (c) follows from the containment condi-
tions in (14).

We note that, unlike the approximating set B, the internal
approximations to the individual flexibility sets in Proposi-
tion 2 are not required to be multi-batteries. They can be
expressed as general affine transformations of the given base
sets (cf. condition (14)), requiring only that their aggregation
be a multi-battery flexibility set (cf. conditions (12)-(13)).
This allows for a broader family of approximations to the
individual flexibility sets.

The set containment conditions (14) specified in Proposi-
tion 2 can be equivalently reformulated as a set of linear
feasibility conditions using a well-known result from the
literature [19], [25]–[27], which provides necessary and
sufficient conditions for the containment of an AH-polytope
within an H-polytope.

Lemma 3. Let X = {x ∈ Rnx |Hxx ≤ hx} and Y = {y ∈
Rny |Hyy ≤ hy}, where Hx ∈ Rmx×nx , Hy ∈ Rmy×ny ,
and X is assumed to be nonempty. Given a vector γ ∈ Rny

and matrix Γ ∈ Rny×nx , it holds that γ + ΓX ⊆ Y if and
only if there exists a matrix Λ ∈ Rmy×mx such that

Λ ≥ 0, (15)
ΛHx = HyΓ, (16)
Λhx ≤ hy −Hyγ. (17)

Lemma 3 follows from standard duality results in convex
analysis, and can be interpreted as a variant of Farkas’
Lemma. We refer the reader to [19, Lemma 1] for a concise
proof of Lemma 3.



Utilizing Proposition 2 and Lemma 3, we provide a set of
linear feasibility conditions that are sufficient for the multi-
battery containment condition B = µ+

∑
k∈K σkBk ⊆ U.

Theorem 4. It holds that µ+
∑

k∈K σkBk ⊆ U if there exist
Λk,i ∈ R4T×4T , γi ∈ RT and Γk,i ∈ RT×T for i = 1, . . . , N
and k = 1, . . . ,K such that

µ =
∑
i∈N

γi, (18)

σkIT =
∑
i∈N

Γk,i, ∀ k ∈ K, (19)

Λk,i ≥ 0, ∀ k ∈ K, i ∈ N , (20)
Λk,iH = HΓk,i, ∀ k ∈ K, i ∈ N , (21)∑
k∈K

Λk,ibk ≤ hi −Hγi, ∀ i ∈ N . (22)

Proof. From Proposition 2, it suffices to show that γi +∑
k∈K Γk,iBk ⊆ Ui for i = 1, . . . , N to prove the desired

result. For i ∈ N , the Minkowski sum under consideration
can be rewritten as an AH-polytope given by

γi +
∑
k∈K

Γk,iBk = γi + Γ̄iB̄,

where Γ̄i := [Γ1,i . . . ΓK,i] and B̄ := {ū ∈
RKT |diag(H, . . . ,H)ū ≤ (b1, . . . , bK)}. From Lemma 3, it
follows that conditions (20)-(22) are necessary and sufficient
for the containment γi + Γ̄iB̄ ⊆ Ui for i = 1, . . . , N .

B. Approximating the Hausdorff Distance: dH(B, U)

As noted earlier, computing the Hausdorff distance be-
tween the multi-battery set B and the aggregate flexibility
set U exactly is an NP-hard problem. To address this, we
seek to construct an upper bound on this distance that can
be utilized as a surrogate for the objective function of the
multi-battery approximation problem (6). We derive an upper
bound by utilizing the Lipschitz continuity of H-polytopes
with respect to their right-hand side data, and exploiting
the fact that each base set is a superset of the Minkowski
average of the individual flexibility sets that belong to its
corresponding cluster, i.e., Bk ⊇ (1/|Ck|)

∑
i∈Ck Ui.

Theorem 5. Given a collection of clusters {Ck}k∈K, base
sets {Bk}k∈K, and a multi-battery B = µ+

∑
k∈K σkBk, it

holds that

dH(B, U) ≤ L(H)
∑
k∈K

‖Hµk + (σk − |Ck|)bk‖, (23)

where µ1, . . . , µK ∈ RT is any collection of vectors that
satisfy

∑
k∈K µk = µ.

Proof. The desired result follows from the following string

of inequalities:

dH(B, U) = dH

(∑
k∈K

µk + σkBk,
∑
k∈K

∑
i∈Ck

Ui

)
(a)

≤ dH

(∑
k∈K

µk + σkBk,
∑
k∈K

|Ck|Bk

)
(b)

≤
∑
k∈K

dH(µk + σkBk, |Ck|Bk)

(c)

≤ L(H)
∑
k∈K

‖Hµk + σkbk − |Ck|bk‖ .

Inequality (a) follows from B ⊆ U ⊆
∑

k∈K |Ck|Bk since∑
i∈Ck Ui ⊆ |Ck|Bk by (11) and from the fact that given

three nonempty and compacts sets X,Y,Z ⊆ RT such that
X ⊆ Y ⊆ Z, we have dH(X, Y) ≤ dH(X, Z). Inequality
(b) follows from the triangle inequality for the Hausdorff
distance between nonempty, compact sets. Inequality (c)
follows from Lemma 1 and from using an H-polytope
representation of µk + σkBk as in (5).

Using the sufficient containment conditions (18)-(22) in
Theorem 4 and the surrogate objective function (23) in The-
orem 5, we obtain the following conservative approximation
of the multi-battery approximation problem (6):

minimize
∑
k∈K

‖Hµk + (σk − |Ck|) bk‖

subject to
∑
k∈K

µk =
∑
i∈N

γi, (24)

σkIT =
∑
i∈N

Γk,i, ∀k ∈ K,

Λk,i ≥ 0, ∀k ∈ K, i ∈ N ,
Λk,iH = HΓk,i, ∀k ∈ K, i ∈ N ,∑
k∈K

Λk,ibk ≤ hi −Hγi, ∀i ∈ N .

Problem (24) is a convex program with linear constraints
in the decision variables γi, Γk,i, µk, σk and Λk,i for
k = 1, . . . ,K and i = 1, . . . , N . The number of decision
variables and constraints in this problem scale polynomially
in N , K, and T .

In the special case where each individual flexibility set is
a homothet of the base set associated with its cluster (i.e.,
for each k ∈ K and i ∈ Ck there exist γi ∈ RT and βi ∈ R+

such that Ui = γi + βiBk), then the solution obtained from
solving the convex program (24) will equal the aggregate
flexibility set exactly.

Remark 2 (Cluster-wise problem decomposition). We note
that one can reduce the number of decision variables and
constraints in problem (24) by replacing the original contain-
ment condition µ +

∑
k∈K σkBk ⊆

∑
i∈N Ui with a more

restrictive set of cluster-wise containment conditions µk +
σkBk ⊆

∑
i∈Ck Ui for k = 1, . . . ,K. Under this additional

restriction, problem (24) decomposes into K separate inner
approximation problems, one for each cluster. Naturally, this



reduction in complexity may be accompanied by additional
conservatism.

C. Disaggregating Aggregate Power Profiles

To actually implement an aggregate power profile u ∈ U
in the aggregate flexibility set, one must decompose u into
a collection of individually feasible power profiles ui ∈ Ui

for i = 1, . . . , N such that u =
∑

i∈N ui. Of course, this
disaggregation can be carried by solving a linear feasibility
problem whose size grows with the population size N .

One can bypass having to solve such linear feasibility
problems by utilizing the class of multi-battery approxima-
tions proposed in this paper to disaggregate any power profile
in a multi-battery flexibility set using an affine mapping
that is computed as a byproduct of solving the convex
program (24). Consider a multi-battery flexibility set B = µ+∑

k∈K σkBk satisfying conditions (18)-(22) in Theorem 4.
Let u = µ+

∑
k∈K σkũk ∈ B be an arbitrary power profile

in this set, where ũk ∈ Bk for k = 1, . . . ,K. It follows from
(18)-(19) that

µ+
∑
k∈K

σkũk =
∑
i∈N

(
γi +

∑
k∈K

Γk,iũk

)
. (25)

Since conditions (20)-(22) imply that γi +
∑

k∈K Γk,iBk ⊆
Ui for all i ∈ N (a consequence of Lemma 3), it must be
that γi +

∑
k∈K Γk,iũk ∈ Ui for all i ∈ N . Accordingly, the

aggregate power profile u ∈ B can be disaggregated into a
collection of individually realizable power profiles given by

ui := γi +
∑
k∈K

Γk,iũk (26)

for i = 1, . . . , N .

V. EXPERIMENTS

In this section, we illustrate the method proposed in this
paper using simulated EV charging requirements based on a
daytime workplace charging scenario. We first show how to
express the charging requirements of an EV as a flexibility
set, as defined in Eq. (2). Using this model, we then conduct
experiments to illustrate the improvement in performance
that can be achieved in going from a single base set (such
as in [16] and [19]) to multiple base sets in the multi-battery
approximation.

A. Simulating EV Charging Requirements

We consider a setting where each EV i ∈ N plugs
in to charge when arriving at time ai ∈ T and remains
connected until its departure time di ∈ T . For all time
periods t ∈ {ai, . . . , di}, we assume that EV i can be
charged at any rate between zero and Ri ∈ R+. At any
other time, the charging rate is required to be zero. Each
EV i is assumed to request a total energy amount Ei ∈ R+

that must be delivered by its charging completion deadline.
Together, these charging constraints and energy requirements
can be encoded as a virtual battery model (2) by specifying

the charging profile limits (ui, ui) and the cumulative energy
profile limits (xi, xi) according to

ui(t) = Ri · 1{t ∈ {ai, . . . , di}} (27)
ui(t) = 0 (28)

for t = 0, . . . , T − 1, and

xi(t) = min(Ei, δRi(t− ai)) · 1{t ≥ ai} (29)
xi(t) = max(0, Ei − δRi(di − t)) · 1{t ∈ {ai, . . . , di}}

+ Ei · 1{t > di} (30)

for t = 1, . . . , T . The upper and lower power limits in (27)-
(28) restrict the charging power to be between zero and the
maximum charging rate when the EV is plugged in, and
zero when disconnected. The upper and lower energy limits
in (29)-(30) ensure that the EV receives its desired amount
of energy by its charging completion deadline.

Table I summarizes the EV charging parameters used
to simulate different scenarios of daytime workplace EV
charging used in the numerical experiments of the next
section.

Param. Description Value or Range
δ Time period length 2/3 hr
T Number of time periods 18
ai Plug-in time [7 AM, 10 AM]

di Charging deadline [4 PM, 7 PM]

Ri Maximum charging rate [7, 13] kW
Ei Desired amount of energy [0, δRi(di − ai)] kWh

TABLE I: Summary of EV charging parameters used in
numerical experiments. The parameters are either fixed at
the specified value or uniformly distributed random variables
over the specified interval.

B. Peak Load Minimization

In this section, we evaluate the accuracy of the multi-
battery approximation by varying the number of base sets
used in the multi-battery approximation. We measure the
performance of the resulting approximations in the context
of a simple aggregate peak load minimization problem.

More specifically, given an aggregate flexibility set U,
the aggregator seeks to solve the following optimization
problem:

minimize ‖u‖∞ subject to u ∈ U,

whose optimal value we denote by J∗ := min{‖u‖∞ |u ∈
U}. The optimal solution to this peak shaving problem will
be a feasible aggregate charging profile that meets the energy
demands of all EVs while using minimal aggregate charging
rates. Such controlled charging is more desirable than un-
managed charging (where EVs charge at the maximum rate
until their energy demand is met), which can result in a large
aggregate peak load, as illustrated in Figure 1(a).

We conduct 100 independent experiments, where, for
each experiment, we simulate the charging requirements of
N = 50 EVs and construct their corresponding individual
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(a) Plot of the aggregate EV load profile un-
der unmanaged charging, optimal charging,
and suboptimal charging using the multi-
battery approximation (K = 5).
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(b) Disaggregation of the EV load profile
across the K = 5 virtual batteries.
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(c) Disaggregation of the EV load profile
across the N = 50 individual EVs.

Fig. 1: Aggregate EV charging profile u under a K = 5 multi-battery approximation and its disaggregation across K = 5
virtual batteries (u =

∑
k∈K µk + σkũk), and across N = 50 EVs (u =

∑
i∈N γi +

∑
k∈K Γk,iũk), where ũk ∈ Bk for

k = 1, . . . ,K. The disaggregated load profiles are stacked and the solid black line (in (b) and (c)) corresponds to the total
load.

flexibility sets. Given these randomly sampled sets, we
compute different multi-battery approximations by varying
the number of base sets K from one to five. These base sets
are constructed as described in Section III, where the single-
battery set (K = 1) corresponds to the base set used in [16]
and [19]. Then, for each multi-battery approximation, we
solve the peak shaving problem over the approximation of
the aggregate flexibility set, and calculate the suboptimality
gap incurred by its corresponding solution as

gap(K) = 100×
(
J(K)− J∗

J∗

)
,

where J(K) := min{‖u‖∞ |u ∈ B(K)} and B(K) is the
multi-battery flexibility set composed of K base sets. The
multi-battery B(K) is computed by solving problem (24)
using the Euclidean norm in the objective function, and using
the sparse representations of the individual flexibility sets
defined in Remark 1 for faster computations.

In Figure 2, we plot the suboptimality gap as a function
of the number of base sets K. It can be seen that there is a
significant improvement in performance when going from a
solution obtained with a single-battery approximation (K =
1) to a solution obtained with a multi-battery approximation
(K > 1).

For one randomly selected experiment, we depict in Fig-
ure 1 the suboptimal load profile obtained from optimizing
over a multi-battery approximation with K = 5 base sets,
along with a disaggregation of this profile across the K
virtual batteries and across the N EVs. While the aggregate
load is flattened (such that the aggregate charging rate is min-
imal), the disaggregated charging profiles are not necessarily
flat. As the connection windows of the EVs do not overlap
completely, it can be advantageous to charge at a higher rate
when there are fewer EVs connected.
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Fig. 2: Suboptimality gap versus the number of base sets K.
The whiskers determine the min-max range, the box delimits
the interquartile range and the notch determines the median.

VI. CONCLUSION

In this paper, we presented a multi-battery modelling
approach to internally approximating the Minkowski sum of
a collection of heterogeneous EV flexibility sets. This model
yields a novel class of approximating polytopes composed
of the sum of transformations of multiple given convex
polytopes (termed base sets), which are selected using a
clustering algorithm to capture the different geometric shapes
represented by the different individual flexibility sets. The
number of base sets (a user-defined parameter) controls the
multi-battery model’s complexity as well as the quality of
the resulting approximations. We show how to conservatively
approximate the problem of computing a multi-battery inner
approximation which minimizes the Hausdorff distance to
the aggregate flexibility set using a convex program whose
size scales polynomially with the number and dimension of
the individual flexibility sets and base sets. Using a peak
load minimization application, the proposed multi-battery
approximation methods are shown to improve upon the
performance of single-battery approximations.



As a direction for future research, it would be interesting
to extend the modeling framework and methods developed
in this paper to accommodate more realistic EV charging
characteristics, such as battery energy dissipation, charging
inefficiencies, battery degradation, and other factors affecting
the charging dynamics and constraints of an EV battery.
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