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Abstract

We adopt the perspective of an aggregator, which seeks to coordinate its pur-
chase of demand reductions from a fixed group of residential electricity cus-
tomers, with its sale of the aggregate demand reduction in a two-settlement
wholesale energy market. The aggregator procures reductions in demand by
offering its customers a uniform price for reductions in consumption relative
to their predetermined baselines. Prior to its realization of the aggregate
demand reduction, the aggregator must also determine how much energy to
sell into the two-settlement energy market. In the day-ahead market, the
aggregator commits to a forward contract, which calls for the delivery of en-
ergy in the real-time market. The underlying aggregate demand curve, which
relates the aggregate demand reduction to the aggregator’s offered price, is
assumed to be affine and subject to unobservable, random shocks. Assuming
that both the parameters of the demand curve and the distribution of the
random shocks are initially unknown to the aggregator, we investigate the
extent to which the aggregator might dynamically adapt its offered prices
and forward contracts to maximize its expected profit over a time window of
T days. Specifically, we design a dynamic pricing and contract offering pol-
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icy that resolves the aggregator’s need to learn the unknown demand model
with its desire to maximize its cumulative expected profit over time. The
proposed pricing policy is proven to be asymptotically optimal — exhibiting
a regret over T days that is no greater than O(

√
T ).
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1. Introduction

The large scale utilization of demand response (DR) resources has the po-
tential to substantially improve the reliability and efficiency of electric power
systems. Accordingly, several state and federal mandates have been estab-
lished to facilitate the integration of demand response resources into whole-
sale electricity markets. For example, FERC Order 719 mandates that Inde-
pendent System Operators (ISOs) permit the direct sale of energy produced
by DR resources into wholesale electricity markets (FERC, 2008). However,
as individual residential customers often posses insufficient capacity to par-
ticipate in such markets directly, there emerges the need for an intermediary,
or aggregator, with the ability to coordinate the demand response of large
numbers of residential customers for direct sale into the wholesale electricity
market. Such is consistent with the growing multitude of ISO and utility-run
DR programs, which require that aggregated DR resources have a minimum
load curtailment capability of 100 kilowatt.1

In this paper, we adopt the perspective of an aggregator, which seeks
to coordinate its purchase of an aggregate demand reduction from a fixed
group of residential electricity customers, with its sale of the aggregate de-
mand reduction into a two-settlement wholesale energy market.2 Formally,
this amounts to a two-sided optimization problem, which requires the aggre-
gator to balance the cost it incurs in procuring a reduction in demand from
participating customers against the revenue it derives from its sale of the (a

1Specific examples of such programs include the Proxy Demand Resource (PDR) pro-
gram (Wolak et al., 2009) and the Day-Ahead Demand Response Program (DADRP)
(NYISO, 2004) currently being operated by the California ISO and the New York ISO,
respectively.

2From the perspective of the wholesale electricity market, the provisioning of a mea-
surable reduction in demand from an aggregator is equivalent to an increase in supply.
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priori uncertain) demand reduction into the wholesale energy market. We
develop the problem more formally in what follows.

We consider the setting in which the aggregator purchases demand reduc-
tions from its customers using a non-discriminatory, posted price mechanism.
That is to say, each participating customer is payed for her reduction in elec-
tricity demand according to a uniform per-unit energy price determined by
the aggregator. Pricing mechanisms of this form fall within the more general
category of DR programs that rely on peak time rebates (PTR) as incen-
tives for demand reduction. Prior to its realization of the aggregate demand
reduction, the aggregator must also determine how much energy to sell into
the two-settlement energy market. In the day-ahead (DA) market, the ag-
gregator commits to a forward contract, which calls for delivery of energy in
the real-time (RT) market. If the realized reduction in demand exceeds (falls
short of) the forward contract, then the difference is sold (bought) in the
RT market. In order to maximize its profit, the aggregator must, therefore,
co-optimize the DR price it offers its customers with the forward contract
that it commits to in the wholesale energy market.

There are a variety of challenges that the aggregator faces in operat-
ing such DR programs. The most basic challenge is the prediction of how
customers will adjust their aggregate demand in response to different DR
prices, i.e., the aggregate demand curve. If the offered price is too low, con-
sumers may be unwilling to curtail their demand; if the offered price is too
high, the aggregator pays too much and gets more reduction than is needed.
As the aggregator is initially ignorant to the customers’ aggregate demand
curve, the aggregator must attempt to learn a model of customer behavior
over time through repeated observations of demand reductions in response
to the DR prices that it offers. Simultaneously, the aggregator must jointly
adjust its DR prices and forward contract offerings in such a manner as to
facilitate profit maximization over time. As we will later show, such tasks
are intimately related, and give rise to a trade-off between the need to learn
(explore) and earn (exploit).

Contribution and Related Work: We study the setting in which the
aggregator is faced with an aggregate demand curve that is affine in price,
and subject to unobservable, additive random shocks. We assume that both
the parameters of the demand curve and the probability distribution of the
random shocks are fixed, and initially unknown to the aggregator. Faced
with such ignorance, we explore the extent to which the aggregator might
dynamically adapt its posted DR prices and offered contracts to maximize its
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expected profit over a time frame of T days. Specifically, we design a causal
pricing and contract offering policy that resolves the aggregator’s need to
learn the unknown demand model with its desire to maximize its cumulative
expected profit over time. The proposed pricing policy is proven to exhibit
regret (relative to an oracle) over T days that is at most O(

√
T ). In addition,

the proposed policy generates a sequence of posted DR prices and forward
contracts that converge to the oracle optimal DR price and forward contract
in the mean square sense.

The literature — as it relates to the problem of co-optimizing an ag-
gregator’s decisions in both the retail and wholesale electricity markets — is
sparse. Campaigne and Oren (2015) consider a market model that is perhaps
closest in nature to the one considered in this paper. The authors adopt a
mechanism design approach to eliciting demand response, where customers
are rationed and remunerated according to their reported types. A related
line of literature includes (Chao, 2012) and (Crampes and Léautier, 2015).
In this paper, we take a posted price approach to the procurement of demand
response. This is in sharp contrast to the mechanism design approach, as it
gives rise to the need to learn customers’ types (i.e., demand function) over
time.

Organization: The remainder of the paper is organized as follows. In
Section 2, we formulate the aggregator’s profit maximization problem. In
Section 3, we propose a recursive estimation scheme to facilitate the online
learning of the underlying demand model. In Section 4, we propose a joint
pricing and contract offering policy for the aggregator, and provide a theo-
retical analysis that establishes a sublinear growth rate of the regret incurred
by the policy. In Section 5, we illustrate the performance of our proposed
policy with a numerical example. Detailed proofs of all formal results can be
found in the Appendix to the paper.

2. Model

We adopt the perspective of an aggregator who seeks to purchase demand
reductions from a fixed group of N customers for sale into a two-settlement
wholesale energy market. The market is assumed to repeat over multiple
time periods (e.g., days) indexed by t = 1, 2, . . .. The actions taken by the
aggregator and their timing are specified in the following subsections.
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2.1. Two-Settlement Market Model

At the beginning of each time period t, the aggregator commits to a
forward contract for energy in the day-ahead (DA) market in the amount of
Qt (kWh). The forward contract is remunerated at the DA energy price. The
forward contract calls for delivery in the real-time (RT) market. If the energy
delivered by the aggregator (i.e., the aggregate demand reduction) falls short
of the forward contract, the aggregator must purchase the shortfall in the
RT market at the shortage price. If the energy delivered exceeds the forward
contract, the aggregator must sell the excess supply in the RT market at the
overage price. We denote the wholesale energy prices ($/kWh) by

• π, DA energy price,

• π−, RT shortage price,

• π+, RT overage price.

We assume throughout that the wholesale energy prices are fixed and known.
We note, however, that it is straightforward to generalize the results stated
in this paper to accommodate the more general setting in which the real-
time energy prices are a priori uncertain and modeled as exogenous random
variables (that are statistically independent of the underlying randomness in
demand). We also assume that the wholesale energy prices satisfy π > 0
and π+ < π < π−. Such assumption serves to facilitate clarity of exposition
and analysis in the sequel, as it preserves the concavity of the aggregator’s
expected profit function (2).

2.2. Demand Response Model

In order to fulfill its forward contract commitment Qt on day t, the ag-
gregator must elicit an aggregate reduction in demand from its customers. It
does so by broadcasting a uniform DR price pt ≥ 0, to which each customer
i responds with a reduction in demand in the amount of Dit (kWh), thereby
entitling each customer i to receive a payment of ptDit. We note that implicit
in this model is the assumption that each customer’s reduction in demand
is measured against a predetermined baseline. The question as to how to
accurately estimate a customer’s baseline consumption is a challenging and
active area of research (Chao, 2011; Chelmis et al., 2015; Coughlin et al.,
2009; Muthirayan et al., 2016). The expansion of our model to accommo-
date the endogenous estimation of a priori uncertain customer baselines is
left as a direction for future research.
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We model the response of each customer i to the posted price pt at time
t according to the affine function

Dit = aipt + bi + εit, for i = 1, . . . , N,

where ai ∈ R and bi ∈ R are customer i’s idiosyncratic demand model
parameters, and εit is an unobservable demand shock, which we model as
a zero-mean random variable. We assume that both the model parameters
ai and bi, and the probability distribution function of the demand shock are
initially unknown to the aggregator. Clearly, the aggregate demand reduction
Dt :=

∑N
i=1Dit satisfies the affine relationship

Dt = apt + b+ εt, (1)

where the aggregate demand model parameters and shock are defined as
a :=

∑N
i=1 ai, b :=

∑N
i=1 bi, and εt :=

∑N
i=1 εit, respectively. In the sequel, we

will occasionally denote the pair of aggregate demand parameters according
to θ := (a, b).

We assume throughout the paper that a ∈ [a, a] and b ∈
[
0, b
]
, where a, a,

and b are assumed to be known and satisfy 0 < a ≤ a <∞ and 0 ≤ b <∞.
Such assumptions are natural, as they ensure a bounded and positive price
elasticity of aggregate demand, and that reductions in aggregate demand are
guaranteed to be nonnegative in the absence of demand shocks. We also as-
sume that the sequence of aggregate demand shocks {εt} are independent and
identically distributed (IID) random variables, in addition to the following
technical assumption.

Assumption 1. The aggregate demand shock εt takes values in the interval
[ε, ε]. Moreover, its cumulative distribution function F is bi-Lipschitz over
this range. Namely, there exists a real constant L ≥ 1, such that for all
x, y ∈ [ε, ε], it holds that

1

L
|x− y| ≤ |F (x)− F (y)| ≤ L |x− y| .

The assumption that the aggregate demand shock takes bounded values is
natural, given the physical limitation on the range of values that demand can
take. We also note that the aggregator does not require explicit knowledge
of the parameters specified in Assumption 1 beyond the assumption of their
boundedness.
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2.3. Aggregator Profit

The expected profit derived by the aggregator during period t given a
fixed price pt and forward contract Qt is determined by

r(pt,Qt) := πQt + E
[
π+[Dt −Qt]

+ − π−[Qt −Dt]
+ − ptDt

]
. (2)

Here, expectation is taken with respect to the distribution on the random
shock εt, and [x]+ := max{0, x} for all x ∈ R. It is not difficult to show that
the expected profit criterion (2) is concave in its arguments (pt, Qt) given the
assumptions stated in this paper thus far.

We define the oracle optimal price and contract as

(p∗, Q∗) := argmax{r(p,Q) : (p,Q) ∈ R2}.

That is to say, (p∗, Q∗) denote the DR price and forward contract, which
jointly maximize the aggregator’s expected profit given perfect knowledge of
the demand model. Note that oracle optimal price and contract are time-
invariant, as the wholesale energy prices and demand model are assumed to
be time invariant. Their closed-form expressions are given in the following
lemma.

Lemma 1 (Oracle Optimal Policy). The oracle optimal price p∗ and con-
tract Q∗ are given by

p∗ =
1

2

(
π − b

a

)
, (3)

Q∗ = ap∗ + b+ F−1(α), (4)

where α := (π − π+)/(π− − π+).

Here, F−1(α) := inf{x ∈ R : F (x) ≥ α} denotes the α-quantile of the random
shock εt. We are guaranteed that α ∈ [0, 1], because of the assumption that
π+ < π < π−. We define the oracle optimal profit accumulated over T time
periods as

R∗(T ) :=
T∑
t=1

r(p∗, Q∗).

We employ the term oracle, as R∗(T ) equals the maximum expected profit
that an aggregator might derive over T times periods if it had perfect knowl-
edge of the demand model.
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2.4. Policy Design and Regret

We consider the scenario in which the aggregator knows neither the de-
mand model parameter θ = (a, b) nor the aggregate shock distribution F at
the outset. Accordingly, the aggregator must endeavor to learn these fea-
tures from the data it collects over time, e.g., through online assimilation
of measurements of aggregate demand reductions in response to its posted
DR prices. At the same time, the aggregator must dynamically adapt its
sequence of posted DR prices (and forward contract offerings) to improve
its profit over time. In what immediately follows, we describe the space of
feasible policies that the aggregator might use to guide its adaptation of DR
prices {pt} and contracts {Qt} over time.

Prior to its determination of the price pt and the contract Qt at time
t, the aggregator has access to the entire history of prices, contract of-
ferings, and aggregate demand reductions, up to and including time pe-
riod t − 1. We define a feasible policy as an infinite sequence of functions
γ := ((p1, Q1), (p2, Q2), . . .), where each function in the sequence is allowed
to depend only on the past data available until that point in time. More for-
mally, we require that the functions (pt, Qt) be measurable according to the
σ-algebra generated by the history of prices, offered contracts, and demand
observations, i.e.,

(p1, . . . , pt−1, Q1, . . . , Qt−1, D1, . . . , Dt−1)

for all time periods t ≥ 2. For t = 1, we require that (p1, Q1) be a pair of
deterministic constants.

The expected profit generated by a feasible policy γ over T time periods
is defined as

Rγ(T ) := Eγ
[

T∑
t=1

r(pt, Qt)

]
, (5)

where the expectation is taken with respect to the demand model (1) under
the policy γ. We measure the performance of a feasible policy γ over T time
periods according to the T -period regret :

∆γ(T ) := R∗(T )−Rγ(T ).

The T -period regret incurred by a feasible policy equals the difference be-
tween the oracle optimal profit and the expected profit incurred by that policy
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over T time periods. Clearly, policies that produce low regret are preferred,
as the oracle optimal profit is an upper bound on the maximum expected
profit achievable by any feasible policy. Accordingly, we seek the design of
policies whose T -period regret grows sublinearly with the horizon T . Such
policies are said to have no-regret, as their average regret (1/T ) · ∆γ(T ) is
guaranteed to vanish asymptotically. More formally, we have the following
definition.

Definition 1 (No-Regret Policy). A feasible policy γ is said to have no-
regret if limT→∞∆γ(T )/T = 0.

The following result establishes an upper bound on the T -period regret
in terms of the pricing and contract errors relative to their oracle optimal
counterparts. Lemma 2 will prove useful to the derivation of our main results.

Lemma 2. The T -period regret incurred by any feasible policy γ is upper
bounded by

∆γ(T ) ≤ a
T∑
t=1

Eγ
[
(pt − p∗)2

]
+ L(π− − π+)

T∑
t=1

Eγ
[
(Qt −Q∗ − a(pt − p∗))2

]
,

(6)

where (p∗, Q∗) denote the oracle optimal price and contract.

Lemma 2 reveals that convergence of the posted prices {pt} and offered con-
tracts {Qt} to the oracle optimal price p∗ and contract Q∗ in the mean square
sense, respectively, will prove essential to the design of policies that exhibit
no-regret. In the following section, we introduce a simple (least-squares)
method for demand model learning that will facilitate the design of such
policies.

3. Demand Model Learning

In this section, we propose a simple approach to enable the dynamic
learning of the underlying demand model from data using the method of
least squares estimation.
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3.1. Parameter Estimation

We define the least squares estimator (LSE) of the parameter θ, given the
history of past prices and demand observations through time period t as

θt := arg min

{
t∑

k=1

(Dk − (ϑ1pk + ϑ2))
2 : (ϑ1, ϑ2) ∈ R2

}
,

for time periods t = 2, 3, . . .. The LSE is given by

θt = J −1
t

(
t∑

k=1

[
pk
1

]
Dk

)
, (7)

assuming that the indicated inverse exists. The matrix Jt is defined as

Jt :=
t∑

k=1

[
pk
1

] [
pk
1

]>
.

Its inverse is given by

J −1
t =

1

Jt

(
1

t

t∑
k=1

[
−1

pk

] [
−1

pk

]>)
, (8)

where Jt :=
∑t

k=1(pk − p̄t)2 and p̄t := (1/t)
∑t

k=1 pk. Qualitatively Jt can be
interpreted as measuring the cumulative dispersion of the sequence of posted
prices around their mean. The parameter estimation error that results under
the LSE (7) can be expressed as

θt − θ = J −1
t

(
t∑

k=1

[
pk
1

]
εk

)
. (9)

Recalling our previous assumption that the unknown parameter θ belongs
to a closed and compact set given by Θ := [a, a] × [0, b], one can improve
upon the LSE (7) by projecting θt onto the set Θ. More precisely, define the
truncated least squares estimator (TLSE) as

θ̂t := arg min {‖ϑ− θt‖2 : ϑ ∈ Θ} . (10)

It clearly holds that ‖θ̂t− θ‖ ≤ ‖θt− θ‖. We have the following result, which
establishes a general upper bound on the rate at which the TLSE converges
to the true parameter in probability under any feasible policy.
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Lemma 3 (Role of Price Dispersion). Let γ be a feasible policy. There
exist finite positive constants λ1 and λ2 such that

Pγ{‖θ̂t − θ‖1 > δ} ≤ 2 exp
(
−λ1δ2t

)
+ 2Eγ

[
exp

(
−λ2δ2Jt

)]
(11)

for all δ > 0 and t ≥ 2.

The parameter estimation error bound in (11) suggests a sufficient condition
on the sequence of prices that guarantees consistency of the truncated least
squares estimator. Namely, the parameter estimation error converges to zero
in probability if the sequence of prices are such that their cumulative disper-
sion Jt diverges in probability. In Section 4, we propose a pricing policy that
generates enough variation in the sequence of prices to ensure that Jt grows
unbounded with probability one.

3.2. Quantile Estimation

We propose an approach to the recursive estimation of the unknown quan-
tile function using the residuals generated by the truncated LSE (10). Define

the sequence of residuals associated with the estimator θ̂t as

ε̂k,t := Dk − (âtpk + b̂t), for k = 1, . . . , t. (12)

Define their empirical distribution as

F̂t(x) :=
1

t

t∑
k=1

1{ε̂k,t ≤ x},

and their corresponding empirical quantile function as F̂−1t (α) := inf{x ∈
R : F̂t(x) ≥ α}. It will prove useful to the subsequent analyses to express
the empirical quantile function in terms of the order statistics associated
with the sequence of residuals. The order statistics associated with the se-
quence ε̂1,t, . . . , ε̂t,t are defined as a permutation of the sequence denoted by
ε̂(1),t, . . . , ε̂(t),t, where

ε̂(1),t ≤ ε̂(2),t ≤ . . . ≤ ε̂(t),t.

With the order statistics of the residuals in hand, one can express the em-
pirical quantile function as

F̂−1t (α) = ε̂(i),t, (13)
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where i is the unique index that satisfies i − 1 < tα ≤ i. It is not difficult
to show that this index is given by i = dtαe. Using Equation (13), the
quantile estimation error can be linked to the parameter estimation error via
the following inequality,

|F̂−1t (α)− F−1(α)| ≤ |F−1t (α)− F−1(α)|+
(
1 + |p(i)|

)
‖θ̂t − θ‖1, (14)

where F−1t (α) is defined as the empirical quantile function associated with
sequence of demand shocks ε1, . . . , εt.

It follows from the inequality in (14) that consistency of the quantile

estimator (13) depends on consistency of both the parameter estimator θ̂t
and the empirical quantile function F−1t (α). We establish consistency of
the parameter estimator under our proposed policy in Lemma 4. Clearly,
consistency of the empirical quantile function F−1t (α) does not depend on
the particular policy being used. In Proposition 1, we establish a bound on
the rate at which the sequence {F−1t (α)} converges to F−1(α) in probability.

Proposition 1. There exists a finite positive constant µ1 such that

P{|F−1t (α)− F−1(α)| > δ} ≤ 2 exp(−µ1δ
2t) (15)

for all δ > 0 and t ≥ 2.

We omit a formal proof of Proposition 1, as it can be obtained as a direct
consequence of Lemma 2 in Dvoretzky et al. (1956) using Assumption 1
stated in this paper.

4. Learning to Buy and Sell with No-Regret

In what follows, we build on the approach to demand model learning
outlined in Section 3 to construct a pricing and contract offering policy, which
is guaranteed to exhibit no-regret. In doing so, we establish in Theorem 1
a O(

√
T ) upper bound on the T -period regret incurred under the proposed

policy.

4.1. Myopic Policy (MP)

We first introduce a natural approach to pricing and contract offering,
which combines the model learning scheme outlined in Section 3 with a my-
opic approach to pricing and contract offering. That is to say, at each time
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period t, the aggregator estimates the demand model parameters and quantile
function according to θ̂t−1 and F̂−1t−1(α) defined in (10) and (13), respectively,
and sets the price and forward contract according to

p̂t =
1

2

(
π − b̂t−1

ât−1

)
, (16)

Q̂t = ât−1p̂t + b̂t−1 + F̂−1t−1(α). (17)

Under this myopic policy,3 the aggregator treats its demand model estimates
in each period as if they were correct, and ignores the impact of its choice of
price on its ability to accurately estimate the demand model in future time
periods. As discussed in Section 3.1, consistency of the parameter estima-
tor is reliant upon sufficient dispersion in the underlying sequence of prices.
However, under the myopic policy the sequence of prices may converge pre-
maturely to a fixed price (that is different from the oracle optimal price). As
a consequence, the sequence of parameter estimates may also converge to val-
ues different from the true model parameter. This phenomenon, also known
as incomplete learning, is well-documented in the adaptive control litera-
ture (Borkar and Varaiya, 1982; Kumar and Varaiya, 2015; Lai and Robbins,
1982) and the revenue management literature (den Boer and Zwart, 2013;
Keskin and Zeevi, 2014). In Section 5, we conduct a numerical case study
that suggests the occurrence of incomplete learning under the myopic policy.
We refer the reader to Figure 1(c) for a graphical illustration of incomplete
learning under the myopic policy.

4.2. Randomly Perturbed Myopic Policy (RPMP)

To prevent the occurrence of incomplete learning, we propose a novel
policy that is guaranteed to generate adequate price dispersion through ap-
plication of random perturbations to the myopic policy. We refer to this
policy as the randomly perturbed myopic policy (RPMP). It is defined as

pt =

{
p̂t, if ξt = 0,

pt−1 + ρ, if ξt = 1,
(18)

Qt = ât−1pt + b̂t−1 + F̂−1t−1(α), (19)

3It is worth noting that, in the adaptive control theory literature, such myopic policies
are more commonly known as certainty equivalent policies.
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where ξt ∼ Ber(ηt−r) defines a sequence of independent Bernoulli random
variables with P{ξt = 1} = ηt−r. Here, the parameters η ∈ (0, 1], ρ ∈ (0,∞),
and r ∈ [0,∞) are user specified constants. The parameter η determines,
in part, the probability that a perturbation is applied to the myopic price
at any given time period, while the parameter ρ determines the magnitude
of this perturbation. In this paper, we allow the parameters η and ρ to be
arbitrary,4 and investigate the role that the parameter r plays in controlling
the rate at which the perturbation probability decays over time.

Ultimately, the parameter r must be designed to balance a delicate trade-
off between exploration and exploitation. On the one hand, the probability
that a perturbation occurs should decay at a rate that is slow enough to
generate sufficient price dispersion necessary to ensure consistent parameter
estimation (cf. Lemma 3). On the other hand, this perturbation probability
should decay at a rate that is fast enough to ensure that the (deliberate)
pricing errors do not accumulate too rapidly. In Theorem 1, we establish an
upper bound on the T -period regret that captures this tradeoff, and show
that a perturbation probability P{ξt = 1} = O(t−1/2) is optimal in the sense
that it minimizes the asymptotic order of our upper bound on regret.

4.3. A Bound on Regret

In what follows, we establish an upper bound on the T -period regret
incurred by the randomly perturbed myopic policy. As part of our main
result in Theorem 1, we also characterize the optimal ‘decay rate’ for the
perturbation probability. We first present an upper bound on the rate at
which the cumulative price dispersion Jt grows under the randomly perturbed
myopic policy.

Lemma 4 (Price Dispersion under RPMP). Let δ > 0 and t ≥ 2. There
exists a finite positive constant λ3 such that, under the randomly perturbed
perturbed myopic policy (18) and (19), the cumulative price dispersion Jt
satisfies

Eγ [exp (−δJt)] ≤ exp
(
−h(δ)t1−r

)
,

where h(δ) := λ3(1− exp(−δρ2/4)).

4It is worth noting that the parameters ρ and η play a role in determining the finite-time
performance of the randomly perturbed myopic policy (RPMP). However, the asymptotic
order of regret incurred under the RPMP remains unchanged for any choice of ρ > 0 and
0 < η ≤ 1.
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The combination of Lemmas 3 and 4 yields an upper bound on the rate
at which the parameter estimation error converges to zero (in probability)
under the randomly perturbed myopic policy for any dispersion parameter
r ∈ [0, 1).5 This characterization of the parameter estimation error will play
a central role in the proof of Theorem 1, which establishes an O(T r ∨ T 1−r)
upper bound on the T -period regret incurred by the randomly perturbed
myopic policy.

Theorem 1 (Sub-linear Regret). Let r ∈ (0, 1). There exist finite posi-
tive constants C0, C1, and C2 such that the T -period regret incurred under
the randomly perturbed myopic policy (18) and (19) is upper bounded by

∆γ(T ) ≤ C0 + C1 log(T ) +

(
C2

1− r

)
T 1−r +

(
C2

r

)
T r

for all T ≥ 2.

The structure of the upper bound on regret in Lemma 1 reveals an
exploration-exploitation trade-off in choosing the dispersion parameter r.
Specifically, the O(T r) term captures the component of revenue loss driven
by the parameter estimation error; and the O(T 1−r) term captures the com-
ponent of revenue loss driven by the deliberate pricing errors that are in-
curred when price perturbations are applied. A smaller (larger) value of the
dispersion parameter r implies a greater tendency towards exploration (ex-
ploitation) in pricing under the RPMP. Clearly, this exploration-exploitation
trade-off is balanced by setting the dispersion parameter to r = 1/2, as this
value minimizes the asymptotic order of our upper bound on regret, yielding
∆γ(T ) ≤ O(

√
T ).

It is also worth noting that, as part of the proof of Theorem 1, we establish
that the sequences of posted prices {pt} and contracts {Qt} generated by the
randomly perturbed myopic policy converge to the oracle optimal price p∗

and contract Q∗ in the mean square sense, respectively. We also remark that
Chen et al. (2014) consider a similar setting, which entails the online control
of a dynamic inventory system through pricing and ordering decisions. They
consider a different class of policy designs, and similarly establish an O(

√
T )

upper bound on the order of regret for the class of policies they consider.

5We note that for dispersion parameters r ≥ 1, the upper bound in Lemma 4 does not
provide any useful information.
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5. Numerical Case Study

We compare the performance of the myopic policy (MP) against the ran-
domly perturbed myopic policy (RPMP) over a time horizon of T = 104

periods. We set the tuning parameters of the RPMP as η = 0.2, ρ = 0.04,
and r = 0.5. This choice of ρ amounts to increasing the DR price offered to
customers by four cents anytime a perturbation is applied. We assume that
there are N = 104 customers participating in the DR program. For each
customer i, we select ai uniformly at random from the interval [0.04, 0.20],
and independently select bi according to an exponential distribution (with
mean equal to 0.01) truncated over the interval [0, 0.1].6 We further assume
that the idiosyncratic demand parameters are drawn independently across
customers. For each customer i, we let the demand shock have a normal
distribution with zero-mean and standard deviation equal to 0.5, truncated
over the interval [−2, 2]. We set the DA energy price, the RT shortage price,
and the RT overage price to π = 0.5, π− = 1.7, and π+ = 0.2 ($/kWh), re-
spectively. Finally, we estimate the empirical means and confidence intervals
associated with price, contract, and parameter estimate trajectories using
500 independent realizations of the experiment.

6This range of parameter values is consistent with the range of demand price elasticities
observed in several real-time pricing programs operated in the United States (DoE, 2006;
Faruqui and Sergici, 2010).
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Figure 1: The set of figures on the left demonstrate sample paths generated by the ran-
domly perturbed myopic policy ( ), the myopic policy ( ), and the oracle optimal
policy ( ). The set of middle and right figures demonstrate the mean and confidence
interval associated with sequences generated by the RPMP (middle) and the MP (right),
compared against their oracle policy counterparts. The shaded area represents their middle
70% empirical confidence interval estimated using 100 independent experiments.
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Figure 2: A plot of the T -period regret incurred by the randomly perturbed myopic policy
( ) compared to the T -period regret incurred by the myopic policy ( ).

5.1. Discussion

The plots in Figure 1(c) illustrate an apparent lack of exploration in the
sequence of posted prices generated by the myopic policy. That is to say, the
myopic price sequence rapidly converges to a fixed value, which on average
differs substantially from the oracle optimal price. The same is true for the
sequence of forward contracts generated by the myopic policy. The prema-
ture convergence of the myopic price sequence, in turn, leads to incomplete
learning with the parameter estimates converging incorrect values. As a con-
sequence, the T -period regret incurred by the myopic policy grows linearly
in T , as shown in Figure 2.

On the other hand, the persistent variation in the sequence of prices gener-
ated by the randomly perturbed myopic policy induces parameter estimates,
which asymptotically converge to the true parameter values, as can be seen
from the plots in Figure 1(b). In particular, notice that the (middle 70%)
empirical confidence intervals associated with the posted price and contract
sequences generated by the randomly perturbed myopic policy shrink to their
respective optimal oracle values over time. This provides empirical evidence
supporting our theoretical claim that the sequences of prices and contracts
generated by the randomly perturbed myopic policy converge to their oracle
optimal values in probability.
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6. Conclusion

In this paper, we study the problem of co-optimizing an aggregator’s pur-
chase and sale of demand response. The aggregator purchases energy in the
form of demand reductions from a fixed group of residential customers, and
sells the (a priori uncertain) aggregate demand reduction in a two-settlement
wholesale electricity market. The customers’ aggregate demand function is
assumed to be affine in price (with unknown parameters) and subject to
unobservable, additive random shocks (with unknown distribution). We pro-
pose a data-driven policy — referred to as the randomly perturbed myopic
policy — to guide the aggregator’s adaptation of its posted DR prices and
forward contract offerings over time. We show that the proposed policy is
consistent, meaning that the sequences of prices and contracts that it gen-
erates converge to the oracle optimal price and contract in the mean square
sense, respectively. Moreover, we show that the regret incurred by the pro-
posed policy over T time periods is no more than O(

√
T ).
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Appendix

7. Proof of Lemma 1

Given a fixed pair (p,Q), we have that

r(p,Q) =πQ− (ap2 + pb) + π+E [ap+ b−Q+ ε1]
+

− π−E [Q− (ap+ b)− ε1]+ .

It is straightforward to show that r(p,Q) is strictly concave in its arguments.
It follows that one can characterize its unique maximizers as solutions to the
first order optimality conditions:

∂r(p,Q)

∂p
= −2ap− b+ aπ+(1− F (Q− ap− b)) + aπ−F (Q− ap− b) = 0,

(20)

∂r(p,Q)

∂Q
= π − π+(1− F (Q− ap− b))− π−F (Q− ap− b) = 0. (21)

21
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We note that implicit in calculation of the above partial derivatives is the
exchange of the differentiation and integration operators. Under the oper-
ating assumptions of this paper, it is straightforward to prove the validity
of such an exchange using the Dominated Convergence Theorem. The first
order conditions (20) and (21) can be solved explicitly to obtain the desired
result.

8. Proof of Lemma 2

Let t ≥ 1, and fix (pt, Qt). To streamline the proof, we define Yt :=
Qt− apt− b for each time period t. It follows that the expected profit of the
aggregator can be expressed as

r(pt, Qt) = πYt + E
[
π+[εt − Yt]+ − π−[Yt − εt]+

]
+ (π − pt)(apt + b).

It will be helpful to decompose the expected profit as r(pt, Qt) = r1(pt, Qt) +
r2(pt, Qt), where

r1(pt, Qt) := πYt + E
[
π+[εt − Yt]+ − π−[Yt − εt]+

]
,

r2(pt, Qt) := (π − pt)(apt + b).

First, it is straightforward to show that

r2(p
∗, Q∗)− r2(pt, Qt) = a(pt − p∗)2. (22)

Now we show that for each time period t, we have

r1(p
∗, Q∗)− r1(pt, Qt) ≤ L(π− − π+)(Yt − Y ∗)2, (23)
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where Y ∗ := Q∗ − ap∗ − b. It is straightforward to show that Y ∗ = F−1(α).
Consider first the case in which Yt ≥ Y ∗. It follows that

r1(p
∗, Q∗)− r1(pt, Qt)

= π(Y ∗ − Yt) + π+

∫ ∞
Y ∗

(εt − Y ∗)dF − π+
∫ ∞
Yt

(εt − Yt)dF

− π−
∫ Y ∗

−∞
(Y ∗ − εt)dF + π−

∫ Yt

−∞
(Yt − εt)dF

= π(Y ∗ − Yt) + π+

∫ +∞

Y ∗
(Yt − Y ∗)dF + π−

∫ Y ∗

−∞
(Yt − Y ∗)dF

+ (π− − π+)

∫ Yt

Y ∗
(Yt − εt)dF

= (Y ∗ − Yt)
(
π − π+(1− F (Y ∗))− π−F (Y ∗)

)
+ (π− − π+)

∫ Yt

Y ∗
(Yt − εt)dF

= (π− − π+)

∫ Yt

Y ∗
(Yt − εt)dF,

where the last equality follows from the fact that F (Y ∗) = F (F−1(α)) = α.
Now, using the fact that F is bi-Lipschitz, we obtain

r1(p
∗, Q∗)− r1(pt, Qt) = (π− − π+)

∫ Yt

Y ∗
(Yt − εt)dF

≤ (π− − π+)(Yt − Y ∗)
∫ Yt

Y ∗
t

dF

≤ L(π− − π+)(Yt − Y ∗)2.

For the case in which Yt < Y ∗, one can obtain an identical upper bound
using an analogous approach as above. Finally, combining Inequality (23)
and Equation (22) with the fact that Yt − Y ∗ = Qt −Q∗ − a(pt − p∗) yields
the desired upper bound on regret.

9. Proof of Lemma 3

Using Equation (9), it is straightforward to show that the parameter
estimation error is bounded from above by

‖θ̂t − θ‖1 ≤ (1 + p)|ε̆t|+ |εt|, (24)
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where ε̄t and ε̆t are defined as follows,

ε̄t :=
1

t

t∑
k=1

εk and ε̆t := J−1t

t∑
k=1

(pk − p̄t)εk.

It follows that

Pγ{‖θ̂t − θ‖1 ≥ δ} ≤ P{|εt| ≥ δ/2}+ Pγ{(1 + p)|ε̆t| ≥ δ/2}. (25)

Note that the first probability in the right hand side of Inequality (25) is
independent of policy γ. To bound each term in Inequality (25), we use
the following result, which was first introduced in (Khezeli and Bitar, 2017b,
Lemma 2).

Lemma 5. Let {Xk} be an infinite sequence of zero mean independent ran-
dom variables, satisfying −∞ < X ≤ Xk ≤ X <∞, almost surely, for all k.
Let {βk} be an infinite sequence of real numbers, and define the sequence of
random variables

Yt :=

(
t∑

k=1

βkXk

)/(
t∑

k=1

β2
k

)
.

For all γ > 0 and t ≥ 1, it holds that

P {Yt ≥ δ} ≤ exp

(
− 2γ2

(X −X)2

t∑
k=1

β2
k

)
.

Now, by setting Xk = εk and βk = 1, and applying Lemma 5, we get

P{|εt| ≥ δ/2} ≤ 2 exp

(
− δ2t

2(ε− ε)2

)
. (26)

Similarly, by setting Xk = εk and βk = pk − p̄t, and applying Lemma 5, we
get

Pγ{|ε̆t| ≥ δ/2} ≤ Eγ
[
2 exp

(
− δ2

2(ε− ε)2
Jt

)]
. (27)

By applying Inequalities (26) and (27) to Inequality (25), we get

Pγ{‖θ̂t − θ‖1 ≥ δ} ≤ 2 exp

(
− δ2t

2(ε− ε)2

)
+ Eγ

[
2 exp

(
− δ2

2(1 + p)2(ε− ε)2
Jt

)]
.

Defining λ1 := 1/(2(ε − ε)2) and λ2 := 1/(λ1(1 + p)2) yields the desired
inequality.
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10. Proof of Lemma 4

Recall the definition of cumulative price dispersion Jt :=
∑t

k=1(pk − pt)2.
Under the RPMP, we have that

Jt =
t∑

k=1

(pk − p̄t)2

= (p1 − p̄t)2 +
t∑

k=2

((p̂k − p̄t)(1− ξk) + (pk−1 − p̄t + ρ)ξk)
2

≥
t∑

k=2

((p̂k − p̄t)(1− ξk) + (pk−1 − p̄t + ρ)ξk)
2

=
t−1∑
k=1

((p̂k+1 − p̄t)(1− ξk+1) + (pk − p̄t + ρ)ξk+1)
2

≥
t−1∑
k=1

(pk − p̄t + ρ)2ξ2k+1.

The last inequality follows from the fact that ξk(1 − ξk) = 0 for all k. By
adding and subtracting the term

∑t−1
k=1(pk− p̄t)2 to the right hand side of the

above inequality, we get

Jt ≥
t−1∑
k=1

(pk − p̄t + ρ)2ξ2k+1

=
t−1∑
k=1

{
(pk − p̄t + ρ)2ξ2k+1 + (pk − p̄t)2

}
−

t−1∑
k=1

(pk − p̄t)2

=
t−1∑
k=1

{(
pk − p̄t +

ξ2k+1

1 + ξ2k+1

ρ

)2

(1 + ξ2k+1) +
ξ2k+1

1 + ξ2k+1

ρ2

}
−

t−1∑
k=1

(pk − p̄t)2

≥
t−1∑
k=1

{(
pk − p̄t +

ξ2k+1

1 + ξ2k+1

ρ

)2

(1 + ξ2k+1) +
ξ2k+1

1 + ξ2k+1

ρ2

}
− Jt

≥ ρ2
t−1∑
k=1

ξ2k+1

1 + ξ2k+1

− Jt, (28)
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where the second equality follows from the following algebraic identity. For
any real numbers x, y, and z, it holds that

(x+ y)2z2 + x2 =

(
x+

z2

1 + z2
y

)2

(1 + z2) +
z2

1 + z2
y2.

It follows from Inequality (28) that

Jt ≥ ρ2
t∑

k=2

ξ2k
2(1 + ξ2k)

. (29)

Thus, under the RPMP, we have that

Eγ [exp (−δJt)] ≤ E

[
exp

(
−δρ2

t∑
k=2

ξ2k
2(1 + ξ2k)

)]

=
t∏

k=2

E
[
exp

(
−δρ

2

2

ξ2k
1 + ξ2k

)]

=
t∏

k=2

(
1− ηk−r + ηk−r exp

(
−δρ

2

4

))
,

where the first equality follows from the fact that sequence of random vari-
ables {ξk} are independent, and the second equality follows from the fact
that ξk ∼ Ber(ηk−r) for all k.

Using the fact that 0 ≤ ηk−r(1− exp(−δρ2/4)) ≤ 1, and that e−x ≥ 1−x
for all x ≥ 0, we conclude that

Eγ [exp (−δJt)] ≤
t∏

k=2

exp

(
−ηk−r

(
1− exp

(
−δρ

2

4

)))

= exp

(
−η

(
t∑

k=2

k−r

)(
1− exp

(
−δρ

2

4

)))

≤ exp

(
−η log (3/2) t1−r

(
1− exp

(
−δρ

2

4

)))
. (30)
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The last inequality follows from the fact that for t ≥ 2, we have that

t∑
k=2

k−r ≥
∫ t+1

2

x−rdx

=
1

1− r
(
(t+ 1)1−r − 21−r)

≥ 1

1− r
(
(3/2)1−r − 1

)
t1−r

≥ log (3/2) t1−r.

Th last inequality follows from the fact that ((3/2)1−r − 1)/(1 − r) is a
decreasing function of r over (0, 1), and its limit at r = 1 is equal to log(3/2).
Setting λ3 := η log(3/2) yields the desired inequality.

11. Proof of Theorem 1

We first establish a result that relates pricing and contracting errors under
the RPMP to the parameter estimation error. Its proof is postponed to
Appendix 12.

Lemma 6. Under the randomly perturbed myopic policy (18) and (19), it
holds that

Eγ
[
(pt − p∗)2

]
≤ k1Eγ

[
‖θ̂t−1 − θ‖21

]
+ k2t

−r, (31)

and

Eγ
[
(Qt −Q∗ − a(pt − p∗))2

]
≤ k3Eγ

[
‖θ̂t−1 − θ‖21

]
+ k4

1

t− 1
+ k5

1√
t− 1

,

(32)

for all t ≥ 2.

We combine Lemmas 2 and 6 to obtain

∆γ(T ) ≤k0 + (k1 + k3L(π− − π+))
T∑
t=2

Eγ
[
‖θ̂t−1 − θ‖21

]
+

T∑
t=2

{
k2t
−r + L(π− − π+)

(
k4

1

t− 1
+ k5

1√
t− 1

)}
,
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where k0 := a(p1 − p∗)2 + L(π− − π+)(Q1 −Q∗ − a(p1 − p∗)2).
Note that for the TLSE θ̂t, it holds that P{‖θ̂t − θ‖1 ≥ δ} = 0 for all

δ > δ, where δ is defined as

δ := a− a+ b. (33)

Using the fact that ‖θ̂t − θ‖21 is a non-negative random variable, for t ≥ 2,
we get

Eγ
[
‖θ̂t − θ‖21

]
=

∫ ∞
0

Pγ{‖θ̂t − θ‖21 ≥ δ}dδ

=

∫ δ

0

Pγ{‖θ̂t − θ‖1 ≥
√
δ}dδ

≤
∫ δ

0

2 exp (−λ1δt) dδ

+

∫ δ

0

2 exp
(
−λ3t1−r

(
1− exp

(
−λ2ρ2δ/4

)))
dδ. (34)

The inequality follows from a combination of Lemmas 3 and 4.We now bound
each integral in (34) separately. For the first term, we get∫ δ

0

exp (−λ1δt) dδ = − 1

λ1t
exp (−λ1δt)

∣∣∣∣δ
0

≤ 1

λ1t
. (35)

For the second term, using integration by substitution for u = exp(−λ2ρ2δ/4),
we get ∫ δ

0

exp
(
−λ3t1−r

(
1− exp

(
−λ2ρ2δ/4

)))
dδ

=

∫ 1

exp(−λ2δ
2
ρ2/4)

4 exp (−λ3t1−r (1− u))

λ2ρ2u
du

≤
∫ 1

exp(−λ2δρ2/4)

4 exp (−λ3t1−r (1− u))

λ2ρ2 exp(−λ2δρ2/4)
du

=
4 exp (−λ3t1−r (1− u))

t1−rλ3λ2ρ2 exp(−λ2δρ2/4)

∣∣∣∣1
exp(−λ2δρ2/4)

≤ 4

t1−rλ3λ2ρ2 exp(−λ2δρ2/4)
. (36)
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By applying Inequalities (35) and (36) to (34), we get

Eγ
[
‖θ̂t − θ‖21

]
≤ 2

λ1t
+

8

t1−rλ3λ2ρ2 exp(−λ2δρ2/4)
.

Now by applying the above bound on the parameter estimation error to
Inequality (32), we get

∆γ(T ) ≤ k0 + (k1 + k3L(π− − π+))
T∑
t=2

2

λ1

1

t− 1

+ (k1 + k3L(π− − π+))
T∑
t=2

8

λ3λ2ρ2 exp(−λ2δρ2/4)

1

(t− 1)1−r

+
T∑
t=2

{
k2t
−r + L(π− − π+)

(
k4

1

t− 1
+ k5

1√
t− 1

)}

≤ C0 + (k1 + k3L(π− − π+))
T∑
t=2

{
2

λ1

1

t
+

8

λ3λ2ρ2 exp(−λ2δρ2/4)

1

t1−r

}

+
T∑
t=2

{
k2t
−r + L(π− − π+)

(
k4

1

t
+ k5

1√
t

)}
≤ C0 + C1 log(T ) +

(
C2

1− r

)
T 1−r +

(
C2

r

)
T r.

The second inequality follows from the fact that

T∑
t=2

1

t− 1
=

T−1∑
t=1

1

t
= 1 +

T−1∑
t=2

1

t
≤ 1 +

T∑
t=2

1

t
.

The last inequality follows from the fact that for r ∈ (0, 1), we have that

T∑
t=2

t−r ≤
∫ T

1

x−rdx ≤ 1

1− r
T 1−r,

and that

T∑
t=2

1

t
≤
∫ T

1

1

x
dx = log(T ).
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We complete the proof by defining the constants C0, C1, and C2 as follows.

C0 := k0 + (k1 + k3L(π− − π+))

(
2

λ1
+

8

λ3λ2ρ2 exp(−λ2δρ2/4)

)
+ L(π− − π+)(k4 + k5)

C1 := k1
2

λ1
+ L(π− − π+))

(
2k3
λ1

+ k4

)
C2 := L(π− − π+)k5 + max

{
8(k1 + k3L(π− − π+))

λ3λ2ρ2 exp(−λ2δρ2/4)
, k2

}
12. Proof of Lemma 6

Using the fact that ξt(1− ξt) = 0 for all t ≥ 2, we obtain

Eγ
[
(pt − p∗)2

]
= Eγ

[
((p̂t − p∗)(1− ξt) + (pt−1 − p∗ + ρ)ξt)

2]
= Eγ

[
(p̂t − p∗)2

]
E
[
(1− ξt)2

]
+ Eγ

[
(pt−1 − p∗ + ρ)2

]
E
[
ξ2t
]

= Eγ
[
(p̂t − p∗)2

]
(1− ηt−r) + Eγ

[
(pt−1 − p∗ + ρ)2

]
ηt−r

≤ Eγ
[
(p̂t − p∗)2

]
+ Eγ

[
(pt−1 − p∗ + ρ)2

]
ηt−r.

The second equality follows from the fact that ξt is independent from p̂t and
pt−1. Using Equation (16), it is not difficult to show that

|p̂t − p∗| ≤
a+ b

2aa
‖θ̂t−1 − θ‖1.

Using the above inequality, and the fact that |pt−1 − p∗ + ρ| ≤ p + ρ for all
t ≥ 2, we obtain

Eγ
[
(pt − p∗)2

]
≤ k1Eγ

[
‖θ̂t−1 − θ‖21

]
+ k2t

−r,

where

k1 :=

(
a+ b

2aa

)2

and k2 := (p+ ρ)2η.

Under the randomly perturbed myopic policy for t ≥ 2, we have that

Eγ
[
(Qt −Q∗ − a(pt − p∗))2

]
= Eγ

[(
(θ̂t−1 − θ)

[
pt
1

]
+ F̂−1t−1(α)− F−1(α)

)2
]

≤ Eγ
[(

2(1 + p)‖θ̂t−1 − θ‖1 + |F−1t−1(α)− F−1(α)|
)2]

.
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The inequality follows from Inequality (14). Recall that θ̂t is the TLSE.

Thus, it holds that ‖θ̂t− θ‖1 ≤ δ surely, where δ is defined in Equation (33).
Thus,

Eγ
[
(Qt −Q∗ − a(pt − p∗))2

]
≤ 4(1 + p)2Eγ

[
‖θ̂t−1 − θ‖21

]
+ E

[
(F−1t−1(α)− F−1(α))2

]
+ 4δ(1 + p)E

[
|F−1t−1(α)− F−1(α)|

]
.

To bound the second and the third terms in the right hand side of the above
inequality, we use Inequality (15), and the fact that |F−1t (α)− F−1(α)| and
(F−1t (α) − F−1(α))2 are non-negative random variables. For t ≥ 2, we have
that

E
[∣∣F−1t (α)− F−1(α)

∣∣] =

∫ ∞
0

P
{∣∣F−1t (α)− F−1(α)

∣∣ ≥ δ
}
dδ

≤
∫ ∞
0

2 exp
(
−µ1δ

2t
)
dδ

=

√
π√
µ1t

, (37)

and

E
[(
F−1t (α)− F−1(α)

)2]
=

∫ ∞
0

P
{∣∣F−1t (α)− F−1(α)

∣∣ ≥ √δ} dδ
≤
∫ ∞
0

2 exp (−µ1δt) dδ

=
2

µ1t
. (38)

We conclude the proof by defining the constants k3, k4, and k5 as

k3 := 4(1 + p)2, k4 :=
2

µ1

, and k5 := 4δ(1 + p)

√
π

√
µ1

.
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