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Abstract—With the increasing penetration of intermittent
renewable energy sources into the electric power grid, there
is an emerging need to develop stochastic optimization methods
to enable the reliable and efficient operation of power systems
having a large fraction of their power supplied form uncertain
resources. In this paper, we formulate the stochastic AC optimal
power flow (OPF) problem as a two-stage stochastic program
with robust constraints. This problem amounts to an infinite-
dimensional nonconvex optimization problem. We develop a
finite-dimensional inner approximation as a semidefinite pro-
gram. Its solution yields an affine recourse policy that is
guaranteed to be feasible for the stochastic AC OPF problem.

Index Terms—Optimal power flow, stochastic optimization,
affine recourse.

I. INTRODUCTION

The optimal power flow (OPF) problem is a fundamental
decision problem in power system operations [1]. In its most
general form, OPF is a nonconvex optimization problem,
where the objective is to minimize the total cost of generation
subject to power balance constraints described by Kirchhoff’s
current and voltage laws, and operational constraints reflect-
ing real and reactive limits on power generation, branch
flows, and bus voltage magnitudes. The nonconvexity of
the OPF problem derives in part from the need to enforce
quadratic constraints, which are indefinite in the vector of bus
voltages. The treatment of such nonconvexities in the OPF
problem has traditionally relied on the use of local methods
for constrained optimization, or the use of approximate linear
models of power flow to convexify the underlying optimiza-
tion problem (e.g., DC-OPF). More recently, considerable
effort has been made to derive conditions under which an
optimal solution to the OPF problem can be obtained through
a solution of its semidefinite programming relaxation [2], [3].

Growing public concern surrounding climate change has
led many U.S. states to adopt legislation mandating that a
significant percentage of their electricity be generated by
clean renewable sources. A basic challenge facing the large-
scale integration of wind and solar resources derives from
the need to compensate the attending uncertainty in their
supply of power. At the heart of this challenge is the OPF
problem, and the need to develop stochastic optimization
methods to enable the reliable and cost-effective operation
of power systems having a large fraction of their power
supplied form uncertain renewable sources. In its most basic
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form, the stochastic OPF problem amounts to a two-stage
stochastic program in which the system operator must de-
termine a day-ahead generation schedule, which minimizes
the expected cost of generation, given the opportunity for
recourse in real-time when the uncertain system variables
have been realized. Essentially, the stochastic OPF problem
is an infinite-dimensional nonconvex optimization problem.
To address the nonconvexity in stochastic OPF, the vast
majority of the literature on the topic employs a DC linear
approximation of the AC power flow model [4]-[12]. In
addition, the majority of the literature relies on affine or
piecewise affine approximations of the infinite-dimensional
recourse policy space [4]-[13]. And the primary approach
to the treatment of uncertainty has focused on either robust
[4]-[6], [10], [14] or chance-constrained [7]-[9], [11], [13]
formulations.

Summary of Results: In this paper, we formulate a
stochastic OPF problem as a two-stage stochastic program
with robust constraints. Our primary point of departure from
the existing literature is our treatment of the full AC power
flow model. To the best of our knowledge, the only papers
that treat this model are [13]-[15]. A critical assumption
made in these papers is the assumption of exactness of
the convex (semidefinite or second-order cone) programming
relaxations on which they rely. Exactness of such convex
relaxations for the stochastic OPF problem (with recourse) is
at present not well understood. Alternatively, in this paper, we
explore the extent to which the stochastic OPF problem might
be approximated from within by a convex (semidefinite)
program.

Faced with an infinite-dimensional nonconvex program
with an infinite number of constraints, we develop in Sections
IV-A and IV-B a finite-dimensional inner approximation as a
semidefinite program. We first restrict the space of admissible
recourse policies to be affine in the uncertain system vari-
ables. This restriction yields a finite-dimensional nonconvex
program subject to an infinite number of constraints, which
we further approximate using weak duality to obtain a
sufficient set of finitely many nonconvex matrix inequalities.
Finally, we address the nonconvexity by employing a convex
majorization technique. With this approximation scheme in
hand, we provide in Section IV-C a sufficient condition
guaranteeing that the inner approximation has a nonempty
feasible region. Finally, in Section V, we provide an iterative
method, which yields a sequence of affine recourse policies
whose costs are nonincreasing. We omit all proofs in this
version of the paper due to space constraints.

Notation: Let N, C, and R be the sets of natural,
complex, and real numbers, respectively. For any m € N,



let [m] := {1,2,...,m}. Denote by e; the real i*" standard
basis vector, of dimension appropriate to the context in which
it is used. For any 21, 29 € C, we define a partial ordering on
C by 21 < 2z if and only if Re{z1 } < Re{z2} and Im{z;} <
Im{z,}. For a matrix X € C™*", let [X];; denote its
(i,4) entry, and X* its conjugate transpose. In addition, let
H" C C"*" be the space of n-by-n Hermitian matrices.
For a matrix X € H", the notation X > 0 means that X
is positive semidefinite. For a matrix X € R™*", X > 0
means that X is nonnegative entrywise. Denote by tr(X) the
trace of a matrix X € C™*".

II. SYSTEM MODEL

We begin with a development of a general model for
AC optimal power flow under uncertainty. The system we
consider consists of a heterogeneous mix of generation and
load resources, which differ in terms of their inherent control-
lability and predictability. The perspective we adopt is that
of the system operator (SO), whose objective is to determine
the dispatch of available resources in order to minimize the
expected cost of meeting demand, while ensuring that all
operational limits of generation and transmission facilities are
met.! The optimization model we consider consists of two
stages: day-ahead (DA) and real-time (RT). In day-ahead,
the SO must schedule an initial dispatch of its resources
subject to uncertainty in the eventual realization of certain
system variables, including demand and generation levels
of renewable resources. Such DA scheduling decisions are
essential, as certain generation resources (e.g., coal and
nuclear) have limited ramping capability. In real-time, all
uncertain variables are realized, and the SO is provided a
recourse opportunity to adjust its DA dispatch schedule in
order to balance the system at minimum cost. Ultimately,
the determination of a DA schedule, which minimizes the
expected cost of dispatch given optimal recourse in real-
time, amounts to the solution of a two-stage stochastic
programming problem. We formally define this problem in

).

A. Power Flow Model

We consider an electric power network whose topology
is described by a simple graph G = ([n],£), where the
vertex set [n] represents the collection of transmission buses
and the edge set £ represents the collection of transmission
lines connecting buses. We describe the AC power balance
equations according to Kirchhoff’s current and voltage laws,
which govern the relationship between complex bus voltages
and power injections [16]. Let Y € C™*™ be the network
admittance matrix, v € C™" the vector of bus voltages, and
s € C" the vector of bus power injections. The AC power

balance equations can be expressed as
s; = v*S;v, i € [n], (1)

IThis problem is commonly referred to as the security constrained
economic dispatch (SCED) problem.

where S; := Y*e;e;. The complex power flow from bus ¢ to
bus j, denoted by s;; € C, is given by

(i,7) € &, (2)

where S;; == e, el (¥i;/2 — [Y]ij)* + e;e; [Y]fj and y;; € C
denotes the total shunt admittance of line (¢, 7). We enforce
two classes of constraints. The first requires that bus voltage

magnitudes satisfy

*
Sij =7 SZ‘]‘U,

oMt < ol < O Qe n],

where vin Max ¢ R denote upper and lower bounds
on the voltage magnitude at bus ¢ € [n]. The second class
of constraints enforce line flow capacities. Namely, the real
power flow from bus ¢ to bus j must satisfy

O <u P B ()€,

where P;; = (Si; 4 S};)/2 and £j5** € R denotes the real
power flow capacity of line (i, 5).

B. Uncertainty Model

Uncertainty is modeled by a probability space
(R*, B(R¥),P). The elements, & of the sample space
RF represent the uncertainty in power injection and the
Borel o-algebra, B(RF), is the set of events that are
assigned probabilities by the probability measure P. For any
k,n € N, let Li,n be the space of all Borel measurable,
square-integrable functions from R* to C™.> We denote by
E[] the expectation with respect to P and define = C RF
to be the support of P. We assume throughout that = is a
convex compact subset of R¥ given by

E={¢cRF & =1, EW;E>0, je [},

where each matrix W; € R¥** has the form

Wi
W, - [wj _Q;Q]}' 3)

Here, w; € R, w; € R*~1, and Q; € R% > =1) for some
g; € N. The specification that {&; = 1 for all £ € = allows
us to represent affine functions of (&s,...,&;)* as linear
functions of £&. We further assume that for all j € [¢], there
exists & € = such that £&*W;¢{ > 0. This assumption, is
needed for the proof of Proposition 2. We denote by

M :=E[¢¢] € RMF,

the second-order moment matrix. One can readily show that
M is real, symmetric, and positive definite (see e.g., [17]).

Remark 1. The above representation of = allows us to model
polyhedral uncertainty sets (by setting 2; = 0 for all j € [¢])
as well as uncertainty sets described by convex quadratic
functions of &.

2A complex-valued function f on RF is said to be Borel measurable if
both Re{f} and Im{f} are real-valued Borel measurable.



C. Resource Model

Consumer Model: We consider a consumer model in
which the real-time demand for power at node 7 is deter-
ministic and denoted by d; € C.

Producer Model: To maintain clarity of exposition, we
assume that there is at most a single producer at each bus
i € [n]. We consider a producer model in which the real-
time supply of power, as determined by the SO, is allowed
to depend on the realization of the uncertain system variables
&. Accordingly, we let g;(£) € C denote the power produced
at bus i, where g; € E% 1 1s a (recourse) function to be chosen
by the SO for each bus ie [n]. Each generator ¢ incurs a cost,
which is assumed to be linear in the real power produced.
We explicitly define its production cost as

a;Re{gi(€)},

where «; > 0 for all ¢ € [n].

In order to capture the potential for uncertainty in the
generation capacity available to each producer in real-time,
we require that the power generated by each producer ¢
respects the constraints

where g (§) € C and g;(§) € C denote the minimum
and maximum power levels, respectively, that producer ¢ can
sustain in real-time. This uncertainty in a generator’s avail-
able capacity can be used to model unscheduled generator
outages, and intermittency in renewable power supply. The
realized capacities are assumed to satisfy

g < g,(6) < 7;(&) < g™,

min max

where g;"', ¢i"** € C are the nameplate minimum and
maximum capacities of producer ¢, respectively. We denote
the corresponding vectors by g(&), g(£), g™», g™ ¢ C™,

In practice, a generator cannot adjust its production level
instantaneously, but rather is limited by a prespecified rate
(usually measured in MVA/min) that depends on the type of
generator. We reflect generator ¢’s limited ramping capability
with constraints of the form

< gi(€) — g <

i € [n],

i € [nl, (&)
where it ymax ¢ C denote generator i’s ramp-down
and ramp-up limits, respectively. Here, ¢ € C denotes the
operating point of generator ¢ selected by the SO day-ahead.
It is required to satisfy

gt < gl < g™

— )

i € [n). (6)

In line with [18], our producer model is general enough to
capture a wide range of generator types. We specify several
important examples in the following discussion. Given a day-
ahead dispatch level ¢? that satisfies (6), generator i is said
to be:

o Completely inflexible (e.g., nuclear), if its allowable

range of real-time outputs is given by

gi(§) = 9?-

o Completely flexible (e.g., oil, gas), if its allowable range
of real-time outputs is given by
g < gi(€) < g™

o Intermittent (e.g., wind, solar), if its allowable range of
real-time outputs is given by

9,(6) < gi(§) <G;(6).

X2

We make the following assumption, which is assumed to
hold throughout the paper.

Assumption 1. Assume that g(§) = G¢, and §(&) = G¢, for
some matrices G, G € C"**.

III. STOoCHASTIC AC OPTIMAL POWER FLOW

Leveraging on the preceding development, we formulate
the two-stage stochastic OPF problem, which has the form

minimize K

> aiRe{gi(f)}] (7)

i=1
subject to g2 € C, ¢; € 5%,17 v E Ei’m Vi€ [n],

gt < g) < g, Vi€ [n],

9,(6) < gi(§) <9,;(6)
ritt < gi(6) — g <
9:(§) —v(§)"Siv(§) = di,
o < oy (€)] < v,

K2

[0(&)" Piyju(§)] < 5™, V (i,j) €€, £€E,

Vi€ [n],

VEEE,

where g; is a (recourse) function specifying the power gen-
erated in real-time by producer 7 € [n] and v is a (recourse)
function specifying the real-time bus voltage phasors.

Remark 2. In (7), it is possible to include an additional
term to the objective function corresponding to day-ahead
generation costs. These can be thought of as costs incurred
by energy producers for operating their units at a no-load
point.

Using the power balance equality constraints to eliminate
the decision variables g; € L3 ,, i € [n] and writing
each inequality over the complex’ numbers as a set of two
inequalities over the real numbers, (7) can be posed as
an instance of the following class of two-stage stochastic
problems
minimize

E[v(&)" Aov ()]

subject to uw € RP, v € Ci,n
v(§)" A (§) + bju < ¢j€,
Bu < f,

(Pr)

Vi€ m], E€E,

where Ay, A; € H*, b; € R?, ¢; € RF, foralli €
[m], E € R**P and f € R?, for some m,n,p,s € N. One



can verify that for problem (7), m = 10n + 2|&|, p = 2n,
and s = 4n. The two-stage stochastic problem P, amounts
to an infinite-dimensional nonconvex optimization problem
with an infinite number of constraints. The nonconvexity
arises because the feasible set has a non-convex quadratic
dependency on the set of complex bus voltages, while the
infinite number of constraints derives from the continuous
structure of the uncertainty set =.

IV. CONVEX INNER APPROXIMATION

In this Section, we develop a finite-dimensional inner
approximation to the two-stage stochastic program P, as a
semidefinite program. We first restrict the space of admissible
recourse policies to be affine in uncertain system variables.
Under this restriction, the two-stage stochastic program P,
becomes a finite-dimensional nonconvex program subject to
an infinite number of constraints. Using weak duality, we
derive a sufficient set of finitely many nonconvex quadratic
matrix inequalities. Lastly, we apply a convex majorization
technique, which approximates the nonconvex matrix in-
equalities by a sufficient set of linear matrix inequalities. We
provide in Section IV-C a sufficient condition, which guar-
antees that the resulting inner approximation has a nonempty
feasible region.

A. Affine Recourse

To obtain a tractable inner approximation to the two-stage
stochastic program P,., we first restrict the functional form of
the admissible recourse policies to be linear in the uncertain
variables £. More precisely, we require that

v(§) = V¢ ®)

for some matrix V € C™*F. Given this restriction, we
obtain the following semi-infinite nonconvex program whose
optimal value stands as an upper bound on the optimal value
of the two-stage stochastic program P,

minimize tr(MV*AV) Po)
subject to u € RP, V € Qnxk
E(VFAV)E+biu < ¢¢,

Eu<f.

Vie[m], £E€E,

The restriction to affine recourse policies results in an
optimization problem P, whose decision variables range over
finite-dimensional spaces. However, due to the continuous
structure of the uncertainty set =, problem P, has infinitely
many constraints and is, in general, intractable. To account
for this, we apply weak duality to obtain a sufficient set of
finitely many constraints. We remark that this approximation
of the feasible set can also be derived by employing the
S-procedure [19]. We have the following Lemma, which
follows directly from Proposition 6 in [17].

Lemma 1. Fix P € H*, ¢ € R*, and r € R and let
Q = (e1q™ +qe¥) /2. Consider the following two statements:

(i) &PE+qE+r<0,VEEE
4
(i) I\ € R with A < 0 andP+Q+re ej— > \;W; < 0.
j=1

For any ¢ € N, (ii) implies (i). Moreover, if £ = 1, (i) and
(i) are equivalent.

With Lemma 1 in hand, we can replace the infinite
constraint set in P, with a sufficient set of matrix inequality
constraints in the variables V' € C™** and )\, € R’ for
t € [m]. More precisely, let A} be the ' row of a matrix
A € R™** and for each i € [m] define matrices

C; = (eycf +¢;€7)/2.

The following finite-dimensional nonconvex program P; is
an inner approximation to both problems P, and P,..

minimize tr(MV*AyV)

(Pp)

subject to w € RP, V e C"*F A e R™*¢
¢

VAV = Ci + (bju)eje] — Z[A]ijwj =0,
=1

Eu<f, ’

A <O,

for all i € [m].

Remark 3. P; is equivalent to P, whenever { = 1.

B. Convexification

In this section, we address the nonconvexity inherent to
the quadratic functions in P;. We propose a simple method
that replaces these functions by a class of convex quadratic
functions majorizing (in the positive semidefinite sense)
the nonconvex quadratic functions. The proposed method
is based on the observation that each nonconvex quadratic
function can be expressed as a sum of a convex quadratic
function and a concave quadratic function. This is done by
decomposing each matrix A; into its positive semidefinite and
negative semidefinite parts. We then approximate the concave
function from above with its linearization at a point. Finally,
the sum of this linearization with the convex component of
the original function yields a convex global overestimator of
the original function. The proposed method is illustrated in
Figure 1.

More precisely, for each i € [m], let A; = A;r + A7,
where A, A; € H", denote the positive semidefinite and
negative semidefinite parts of A;, respectively. And let H; :
Cn*k x C"*F — HF be a function given by

Hi(X,Z) = X*ATX + Z*A; X + X* A7 Z — Z*A; Z.

Clearly, for any given Z, the function H;(X,Z) is matrix
convex in X.> The following Lemma highlights two prop-
erties of H;, which are used in the proof of Proposition 1
below, and in the proof of Proposition 3 in Section V.

3A function f : C™**k — HPF is said to be matrix convex if for all X, Z
and 0 < 0 <1, we have f(0X + (1 —0)Z) 2 0f(X)+ (1 —0)f(2).
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Fig. 1: A nonconvex quadratic function (a) is decomposed as a sum of a convex quadratic function (b) and a concave
quadratic function (c). The sum of the convex function (b) and the first order Taylor expansion of the concave function (c)
around a given point z, yield a convex quadratic function in (d) majorizing the original nonconvex quadratic.

Lemma 2. Let Z € C"*F pe given. For all i = 0,1,...,m,
(i) X*A; X = Hy{(X,Z), VXeCk

(i) tr(MX*A;X) < tr(MH;(X,Z)), V X € Cr¥F,

In light of Lemma 2, we provide in Proposition 1 a
semidefinite program whose optimal solution can be mapped
to a feasible solution of P,.. Its proof is a direct consequence
of Lemma 2 and we omit it for brevity.

Proposition 1. Let Vy € C"*F be a given matrix and
suppose that (u, V', \) is an optimal solution of the following
convex optimization problem

tr(MHo(V, )

uweRP, Vel AeR™!
4

Hy(V, Vo) — C; + (bju)eye; — Y [A];W; <0,
j=1

minimize

(P(Vo))

subject to

Eu<f,
A <0,

for all i € [m]. Then (u,v), where U € Ez’n is given by
v(€) = V€ is a feasible solution to the two-stage stochastic
program P,..

We remark that both the objective function and the matrix
inequalities in P.(Vp) admit equivalent reformulations as
linear matrix inequalities by invoking Schur’s complement.

C. Guarantees on Feasibility

A major challenge to the implementation of the convexifi-
cation technique developed in Section IV-B lies in computing
a matrix V; € C"** which yields a nonempty feasible
set for the finite-dimensional convex inner approximation
P.(Vp). In this Section, we provide a method for computing
one such matrix. This method entails the computation of
a feasible generation schedule without recourse — in other
words, an open loop solution to the two-stage stochastic
program P,. To do so, one needs to first characterize the
guaranteed range of available power supply at each bus in
the network. More precisely, we let [y™i® y™axX] denote the
guaranteed range of power supply at bus ¢, where

i = min gy (§).

min
Y; =1maXx ¢g. y

ez =t

Due to the structure of the uncertainty set = and Assumption
1, each of these quantities can be computed in polynomial
time by solving a second-order cone program. An open
loop solution to the two-stage stochastic program can then
be computed by solving the following deterministic OPF
problem

n x
minimize v* <; O@Si_;si> v ©)
subject to v € C"
Y —d; < vt Siu <A —d;, Vi€ [n],
O Vi€ ln,
— 05 < vt Piju < 05, V (i, j) € €.

Although deterministic, the above optimization problem is
non-convex and NP-hard, in general. There are, however,
many off-the-shelf optimization routines (e.g., MATPOWER
[20]), which are reliable in their ability to obtain locally
optimal solutions to problem (9). The following Proposition
shows that a feasible solution to problem (9) can be used
to construct a matrix Vj, which yields a nonempty feasible
region for the finite-dimensional convex inner approximation
of the two-stage stochastic program P,.

Proposition 2. Let vy be an optimal solution to (9), and
define Vy = wvge}. Then, the optimization problem P.(Vy)
has a nonempty feasible region.

V. SUCCESSIVE CONVEX APPROXIMATIONS

Given an optimal solution vy to the deterministic OPF
problem (9), define the matrix Vj := vpe] and consider an
iterative algorithm of the form

argmin
(u,V,A)EF (Vy)
Here, F(V;) denotes the feasible set of problem P.(V;).
The algorithm (10) can be interpreted as implementing a
successive convex majorization-minimization method. We
have the following Proposition, which highlights some of its
properties.

(utg1, Vigr, Apr1) € tr(M Ho(V, V). (10)



Proposition 3. For any iteration t > 0 of (10), the following
properties hold.
(i) F(Vy) is nonempty.

(ii) Any solution (uty1, Vit1, Aey1) satisfies
tr(MV/ 1 AgViy1) < tr(MV]AgVy).

Proposition 3 shows that the iterative algorithm (10) yields
a sequence of feasible solutions to the two-stage stochastic
program P, with nonincreasing costs.

VI. CONCLUSION

We formulate the stochastic AC optimal power flow (OPF)
problem as a two-stage stochastic program with robust con-
straints. We provide a method to approximate the stochastic
AC OPF problem from within by a semidefinite program.
Its solution yields an affine recourse policy in the uncertain
system variables, which is guaranteed to be feasible for the
stochastic AC OPF problem. We also develop an iterative
method, which yields a sequence of feasible affine recourse
policies whose costs are nonincreasing. Moving forward,
we plan to develop a convex outer approximation of the
stochastic AC OPF problem to bound the suboptimality
incurred by the feasible solutions generated according the
method developed in this paper.
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