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Abstract—Robust semidefinite programs are NP-hard in gen-
eral. In contrast, robust linear programs admit equivalent refor-
mulations as finite-dimensional convex programs provided that
the problem data are parameterized affinely in the uncertain
parameters; and that the underlying uncertainty set is described
by an affine slice of a proper cone. In this paper, we propose
a hierarchy of inner and outer polyhedral approximations to
the positive semidefinite (PSD) cone that are exact in the limit.
We apply these polyhedral approximations to the PSD cone to
obtain a computationally tractable hierarchy of inner and outer
approximations to the robust semidefinite program, which are
similarly exact in the limit. We investigate the strengths and
limitations of the proposed approach with a detailed numerical
study.

Index Terms—Robust semidefinite programs.

I. INTRODUCTION

Let Rn be the n-dimensional Euclidean space. A conic
linear program is an optimization problem of the form

minimize
x∈Rm

c>x

subject to A(x) ∈ K,

where the affine map A : Rm → Rn and the vector
c ∈ Rm are the given problem data and K ⊆ Rn is
a closed convex cone. This class of problems includes as
special cases, linear programs, second-order cone programs,
and semidefinite programs (SDPs). A plethora of practical
problems in engineering and applied mathematics can be
formulated as conic linear programs [1]–[3]. Of practical
interest is the setting in which the affine map A is not
exactly known.1 Rather, what is known is that A lies in a
set U , which is assumed to be a convex compact subset of
L(Rm,Rn), the space of all affine maps from Rm to Rn.
A robust solution is one which satisfies the constraints for
every possible realization of the uncertain data; that is, a
vector x ∈ Rm satisfying A(x) ∈ K, for all A ∈ U. The
corresponding robust conic linear program [4], [5] is defined
as

minimize
x∈Rm

c>x

subject to A(x) ∈ K, ∀ A ∈ U.
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1Without loss of generality, we assume that c ∈ Rn is fixed and known.

The semi-infinite2 structure of the robust program renders
it computationally intractable in general. There are, how-
ever, certain cones K and uncertainty sets U for which
the robust program admits an equivalent reformulation as
a finite-dimensional convex optimization problem [4], [6].
For example, consider an uncertain linear program (i.e.,
K = Rn

+) in which the mapping A is affinely parameterized
in the uncertain parameters. If the uncertainty set is either
polytopic, ellipsoidal, or semidefinite representable, then the
robust program can be reformulated as a linear, second-order
cone, or semidefinite program, respectively. Robust second-
order cone and semidefinite programs do not, in general,
admit similar tractable reformulations under the same conic
representations of the uncertainty set. There are, however,
certain characterizations of the uncertainty set for which
robust second-order cone and semidefinite programs admit
computationally tractable reformulations or inner approxi-
mations [6], [7]. We discuss such results in more detail in
Section II-B.

Summary of Results: Let Sn be the space of n × n
real symmetric matrices and Sn+ the subset of positive
semidefinite (PSD) matrices. In this paper, we study robust
semidefinite programs with uncertainty sets of the form

U :=

{
k∑
i=1

ξiAi

∣∣∣∣∣ ξ ∈ Ξ

}
, (1)

where the parameter uncertainty set Ξ ⊆ Rk is assumed to
be a compact convex set described as an affine slice of a
proper cone. The robust semidefinite program has the form

minimize
x∈Rm

c>x (P)

subject to
k∑
i=1

ξiAi(x) ∈ Sn+, ∀ ξ ∈ Ξ,

where c ∈ Rm and A1, . . . ,Ak ∈ L(Rm,Sn).
In this paper, we propose an approximation scheme, which

gives rise to a hierarchy of inner and outer approximations
to the robust semidefinite program. The crux of our approach
centers on the construction of a hierarchy of inner and outer
polyhedral approximations to the positive semidefinite cone,
which are exact in the limit.3 At each level of the hierar-
chy, we apply the inner (outer) polyhedral approximation

2A semi-infinite program is an optimization problem involving finitely
many decision variables, but an infinite number of constraints.

3Contrary to the second-order cone [8], it is shown in [9] that it is, in
general, not possible to approximate the positive semidefinite cone to within
an arbitrary accuracy with a polynomial number of linear inequalities.



to the positive semidefinite cone to obtain a robust linear
program that is an inner (outer) approximation to the robust
semidefinite program. The resulting robust linear programs
admit equivalent reformulations as finite-dimensional convex
programs [4]. At each level of the hierarchy, any solution
to the inner robust linear program will be feasible for the
robust semidefinite program. Moreover, the optimal value of
the outer robust linear program serves as a lower bound on the
optimal value of the robust semidefinite program – thereby
providing a bound on the suboptimality of the feasible point
generated by the inner robust linear program.

The remainder of this paper is organized as follows. In
Section II, we present existing results prertaining to exact
reformulations and inner approximations of robust SDPs.
Section III presents a scheme for constructing polyhedral
approximations to the positive semidefinite cone. Sections
IV-V contain our main results. We evaluate the strengths
and limitations of the proposed approach with a detailed
numerical study in Section VI. We conclude the paper with
directions for future research in Section VII.

Notation: Denote by N the set of natural numbers.
Given any positive integer n ∈ N, define the set [n] :=
{1, 2, . . . , n}. Let ei be the ith real standard basis vector,
of dimension appropriate to the context in which it is used.
The dual cone of a given cone K ⊆ Rn is defined as
K∗ = {y ∈ Rn | x>y ≥ 0, ∀ x ∈ K}.

II. PRELIMINARIES

A. Uncertainty Model

The uncertainty set Ξ is assumed to be a convex compact
subset of Rk given by

Ξ := {ξ ∈ Rk | ξ1 = 1, Bjξ ∈ Cj , j ∈ [d]},

where Cj ⊆ Rk is a proper cone and Bj ∈ Rk×k for all
j ∈ [d]. The requirement that ξ1 = 1 is for notational con-
venience, as it enables the representation of affine functions
of (ξ2, . . . , ξk)> as linear functions of ξ. We assume that
the linear hull of Ξ spans Rk. Such assumption is without
loss of generality, and is used in the proof of the following
Lemma, which shows that a semi-infinite linear constraint
can be replaced by a finite number of linear constraints.

Lemma 1. Let z ∈ Rk. Then, the following two statements
are equivalent

(i) z>ξ ≥ 0, ∀ ξ ∈ Ξ,

(ii) ∃ µ ∈ R and λj ∈ Rk, for all j ∈ [d] such that

µe1+

d∑
j=1

B>j λj = z, µ ≥ 0, and λj ∈ C∗j , ∀ j ∈ [d].

The proof of Lemma 1 is omitted, as it relies on a
straightforward argument based on strong duality. See, for
example, Theorem 1.3.4 in [6].

B. Exact and Approximate Solutions to Robust SDPs

In this section, we review results from the existing liter-
ature, which establishes conditions on the structure of the
uncertainty set Ξ that enable the tractable reformulation or
inner approximation of the robust semidefinite program P .

First, consider so-called scenario-generated uncertainty
sets described by

Ξ = conv {ξ1, . . . , ξN}, (2)

where ξj ∈ Rk for all j = 1, . . . , N . For such uncertainty
sets, the robust semidefinite program admits an equivalent
reformulation as a semidefinite program. We have the fol-
lowing Theorem from [6, Chap. 8.1].

Theorem 1. Consider a scenario-generated uncertainty set
Ξ of the form (2). Then, the semidefinite program

minimize
x∈Rm

c>x

subject to

k∑
i=1

ξjiAi(x) ∈ Sn+, ∀ j ∈ [N ],
(3)

is equivalent to the robust semidefinite program P .

Now, consider norm-bounded uncertainty sets described
by

Ξ = {ξ ∈ Rk | ξ = (1, ξ1; . . . ;ξN ), ξj ∈ Rnj ,

‖ξj‖2 ≤ ρ, ∀ j ∈ [N ]},
(4)

where ρ ∈ R+. It is well known that if the norm-bounded
uncertainty set is unstructured (i.e., N = 1), then the
robust semidefinite program can be equivalently reformulated
as a semidefinite program. Further, if the norm-bounded
uncertainty set is structured (i.e., N > 1), then the robust
semidefinite program can be approximated from within by
a semidefinite program. We summarize these results in the
following Theorem. We refer the reader to [2, Thm. 6.2.1]
and [6, Thm. 9.1.2 & Thm. 8.2.3] for their proofs.

Theorem 2. Consider a norm-bounded uncertainty set Ξ of
the form (4). Define µ0 := 1 and µj :=

∑j
s=1 ns for each

j ∈ [N ]. Consider the semidefinite program

minimize c>x (5)

subject to x ∈ Rm, Sj , Qj ∈ Sn, ∀ j ∈ [N ],

Fj(x, Sj , Qj) ∈ Sn+, ∀ j ∈ [N ],

2A1(x)−
N∑
j=1

(Sj +Qj) ∈ Sn+,

where

Fj(x, Sj , Qj) :=


Sj ρAµj−1+1(x) . . . ρAµj (x)

ρAµj−1+1(x) Qj
...

. . .
...

ρAµj (x) Qj

.
It holds that:



(i) The projection of the feasible set of the semidefinite
program (5) onto the space of x variables is contained
in the feasible set of robust semidefinite program P .

(ii) If N = 1, then the semidefinite program (5) is equiva-
lent to the robust semidefinite program P .

Lastly, for general semi-algebraic uncertainty sets Ξ,
Scherer and Hol [7] develop a method based on sum of
squares optimization to approximate the robust semidefinite
program P from within by a semidefinite program.4 We
refer the reader to Theorem 1 of [7] for the details of their
construction.

III. POLYHEDRAL HIERARCHIES OF THE PSD CONE

In this section, we propose a method for constructing
a hierarchy of polyhedral approximations to the positive
semidefinite cone.5 First, note that the positive semidefinite
cone can be expressed as

Sn+ = {X ∈ Sn | v>Xv ≥ 0, ∀ v ∈∆}, (6)

where ∆ := {v ∈ Rn | ‖v‖1 = 1} denotes the boundary of
the cross polytope in Rn. An outer approximation of the cone
can be constructed by requiring that the quadratic inequalities
in (6) hold only for a finite number of points on the boundary
of the cross polytope. More formally, for each r ∈ N, define
the finite set

∆r := {x ∈∆ | 2rx ∈ Nn}, (7)

and the corresponding polyhedral cone

Onr := {X ∈ Sn | v>Xv ≥ 0, ∀ v ∈∆r}. (8)

The proposed construction yields a hierarchy of outer poly-
hedral approximations to the positive semidefinite cone, i.e.,

On0 ⊇ On1 ⊇ · · · ⊇ Sn+. (9)

Remark 1 (Ordering the Elements in ∆r). The definition of
the polyhedral cone Onr implies a system of p = (1/2)|∆r|
linear inequalities. The factor of 1/2 arises because v ∈ ∆r

implies that −v ∈ ∆r. In the sequel, it will be convenient
to order the elements in ∆r according to v1, . . . , v2p, where
we require that vp+i = −vi for all i ∈ [p].

Taking the dual of each cone in the outer polyhedral hierar-
chy yields a hierarchy of inner polyhedral approximations to
the positive semidefinite cone. Namely, for each level in the
hierarchy r ∈ N, let p = (1/2)|∆r| and define the polyhedral
cone Inr as the dual cone of Onr :

Inr := (Onr )∗ =

{
p∑
i=1

yi(viv
>
i )

∣∣∣∣∣ y ≥ 0

}
. (10)

4In fact, their method method applies to the more general setting in which
the set U is polynomially parameterized in the uncertain parameter ξ.

5The approach we consider is closely related to the construction of
polyhedral hierarchies for the copositive cone proposed in [10].

As the cone of positive semidefinite matrices is self-dual, it
is immediate to establish the nested ordering:

In0 ⊆ In1 ⊆ · · · ⊆ Sn+. (11)

We summarize our results thus far in Proposition 1, and
establish that both the inner and the outer hierarchies of
polyhedral cones converge to the PSD cone asymptotically.
The proof is omitted, as it relies on arguments identical to
those used to prove Theorems 2.1 and 2.2 in [10].

Proposition 1. For each level r ∈ N, it holds that:

(i) Onr ⊇ Onr+1 ⊇ Sn+, and⋂
`∈N

On` = Sn+.

(ii) Inr ⊆ Inr+1 ⊆ Sn+, and

cl

(⋃
`∈N

In`

)
= Sn+,

where cl(S) denotes the closure of a set S.

Although exact in the limit, the number of inequalities
required to describe the inner an outer polyhedral cones does
not scale gracefully with the level of the hierarchy r. In fact, it
is straightforward to show that the number of discretization
points, |∆r|, used to approximate the semidefinite cone is
exponential in the level r.

Remark 2 (Levels 0 & 1 in the Hierarchy). One can show
that levels 0 and 1 of the proposed inner polyhedral hierarchy
can be identified with the cone of nonnegative diagonal
matrices and the cone of diagonally dominant matrices with
nonnegative diagonal entries, respectively. First, notice that
∆0 and ∆1 are equal to

∆0 = {±ei | i ∈ [n]},
∆1 = ∆0 ∪ {±(1/2)(ei ± ej) | 1 ≤ i < j ≤ n}.

It follows from (8) that the corresponding outer polyhedral
cones are given by

On0 = {X ∈ Sn | Xii ≥ 0, i ∈ [n]},

On1 = On0 ∩ {X ∈ Sn | Xii +Xjj ± 2Xij ≥ 0,

1 ≤ i < j ≤ n}.

Taking their dual, we have the inner polyhedral cones de-
scribed by

In0 = {X ∈ Sn | Xii ≥ 0, i ∈ [n]; Xij = 0, ∀ i 6= j},

In1 =
{
X ∈ Sn

∣∣∣ Xii ≥
∑
j 6=i

|Xij |, i ∈ [n]
}
.

Among other applications, the cone of diagonally dominant
matrices with nonnegative diagonal entries has recently been
proposed in [11] as a method to approximate semidefinite
programs for sum of squares optimization.

We close this section by mentioning a related approach
form the literature [12], which develops an adaptive cutting



plane method to construct linear programming approxima-
tions of semidefinite programs. Although not directly appli-
cable to the setting considered in this paper, it would be of
interest to explore the extent to which these techniques might
be extended to approximate robust semidefinite programs.

IV. OUTER HIERARCHY FOR THE ROBUST SDP
We provide in this section a method for constructing a

hierarchy of tractable outer approximations to the robust
semidefinite program P . For each level in the hierarchy
r ∈ N, define a robust linear program according to

minimize
x∈Rm

c>x (POr )

subject to
k∑
i=1

ξiAi(x) ∈ Onr , ∀ ξ ∈ Ξ.

Since Onr ⊇ Sn+, it follows that the optimal value of the
above robust linear program stands as a lower bound on the
optimal value of the robust semidefinite program P .

In what follows, we provide a tractable reformulation of
the (semi-infinite) robust linear program.6 First, notice that
the semi-infinite constraint in the robust linear program POr
holds if and only if

v>j

(
k∑
i=1

ξiAi(x)

)
vj ≥ 0,

∀ vj ∈∆r, j ∈ [p],

∀ ξ ∈ Ξ.

This semi-infinite system of inequalities can be expressed
more compactly as

V (x)ξ ≥ 0, ∀ ξ ∈ Ξ,

where the mapping V : Rm → Rp×k is defined as

V (x) :=

v
>
1 A1(x)v1 . . . v>1 Ak(x)v1

...
. . .

...
v>p A1(x)vp . . . v>p Ak(x)vp

 . (12)

A direct application of Lemma 1 yields the finite-dimensional
conic linear program in Proposition 2, which is an equivalent
reformulation of the robust linear program POr .

Proposition 2. Fix r ∈ N and let p = (1/2)|∆r|. The robust
linear program POr admits an equivalent reformulation as the
following finite-dimensional conic linear program

minimize c>x (13)

subject to x ∈ Rm, µ ∈ Rp, Λj ∈ Rk×p, ∀ j ∈ [d]

µe>1 +

d∑
j=1

Λ>j Bj − V (x) = 0,

Λjei ∈ C∗j , ∀ (i, j) ∈ [p]× [d],

µ ≥ 0.

Let `opt
r denote the optimal value of the above program. It

holds that `opt
r ≤ `

opt
r+1 ≤ vopt for each hierarchy level r ∈ N.

6Here, we let p = (1/2)|∆r| denote the number of hyperplanes defining
the polyhedral cone On

r , and suppose that the elements of ∆r are ordered
as described in Remark 1.

V. INNER HIERARCHY FOR THE ROBUST SDP

We provide in this section two methods for constructing
a hierarchy of tractable inner approximations to the robust
semidefinite program P . For each level in the hierarchy r ∈
N, define a robust linear program according to

minimize
x∈Rm

c>x (PIr )

subject to
k∑
i=1

ξiAi(x) ∈ Inr , ∀ ξ ∈ Ξ.

Since Inr ⊆ Sn+, it follows that any feasible solution to the
above robust linear program is guaranteed to be feasible for
the robust semidefinite program P . As a result, its optimal
value stands as an upper bound on the optimal value of the
robust semidefinite program P .

In what follows, we present two methods for solving the
robust linear program PIr . The first approach rests on an
equivalent reformulation of the robust linear program as
a finite-dimensional conic program. The second approach
relies on a conservative approximation of the robust linear
program as a finite-dimensional conic program with fewer
variables and constraints than the first approach. Naturally,
the resulting gain in computational efficiency is offset by a
potential increase in conservatism of solutions obtained.

A. Equivalent Reformulation of PIr
The V(ertex)-representation of the polyhedral cone Inr

in (10) precludes a direct application of Lemma 1 to the
semi-infinite constraint in PIr . However, the Weyl-Minkowski
theorem [13, Theorem 3.2] ensures that the polyhedral cone
Inr has an equivalent H(yperplane)-representation given by

Inr = {X ∈ Sn | h>j Xhj ≥ 0, j ∈ [`]}, (14)

for some vectors hj ∈ Rn and some positive integer ` ∈ N.
We remark that an H-representation of Inr can be obtained
from its V-represenation through Fourier-Motzkin elimination
[3].

Using the H-representation of Inr in (14), one can equiva-
lently reformulate the semi-infinite constraint in PIr as

H(x)ξ ≥ 0, ∀ ξ ∈ Ξ,

where the mapping H : Rm → R`×k is defined as

H(x) :=

h
>
1 A1(x)h1 . . . h>1 Ak(x)h1

...
. . .

...
h>` A1(x)h` . . . h>` Ak(x)h`

 . (15)

A direct application of Lemma 1 yields the finite-dimensional
conic linear program in Proposition 3, which is an equivalent
reformulation of the robust linear program PIr .



Proposition 3. Fix r ∈ N. The robust linear program PIr
admits an equivalent reformulation as the following finite-
dimensional conic linear program

minimize c>x (16)

subject to x ∈ Rm, µ ∈ R`, Λj ∈ Rk×`, ∀ j ∈ [d]

µe>1 +

d∑
j=1

Λ>j Bj −H(x) = 0,

Λjei ∈ C∗j , ∀ (i, j) ∈ [`]× [d],

µ ≥ 0.

Let uopt
r denote the optimal value of the above program. It

holds that uopt
r ≥ u

opt
r+1 ≥ vopt for each hierarchy level r ∈ N.

A practical drawback of the approximation provided in
Proposition 3 is that it requires a preprocessing step to obtain
a H-representation of the polyhedral cone Inr from its V-
representation. Besides being computationally demanding to
compute, an H-representation of the polyhedral cone may
require a large number of hyperplanes for its specification.
This, in turn, gives rise to a large number of constraints
in problem (16), thereby jeopardizing its tractability. This
practical limitation raises the question as to whether it is
possible to work directly with the vertex representation of
the polyhedral cone Inr to obtain an inner approximation of
the robust linear program PIr that is less computationally
demanding to solve. We discuss one such approach in the
following section.

B. Inner Approximation of PIr

We begin with an equivalent reformulation of the robust
linear program PIr that will prove useful in the sequel.
Using the V-representation of the polyhedral cone Inr , it is
straightforward to show that the robust linear program PIr can
be exactly reformulated as the infinite-dimensional program

minimize c>x (17)

subject to x ∈ Rm, yj ∈ Lk, ∀ j ∈ [p]
k∑
i=1

ξiAi(x) =

p∑
j=1

yj(ξ)(vjv
>
j ), ∀ ξ ∈ Ξ

yj(ξ) ≥ 0, ∀ j ∈ [p], ξ ∈ Ξ,

where Lk is the infinite-dimensional space of all functions
from Rk to R. The above optimization problem is intractable
in general. To obtain a tractable inner approximation of (17),
we restrict the functional form of the functions yj (j ∈ [p])
to be linear in the uncertain parameter ξ – an approach to
complexity reduction originally proposed by Ben-Tal et al.
[14]. More precisely, for each j ∈ [p], we require that

yj(ξ) = y>j ξ,

for some vector yj ∈ Rk. Such restriction gives rise to the
following robust linear program, which amounts to an inner
approximation of the original robust linear program PIr .

minimize c>x (PIr)

subject to x ∈ Rm, yj ∈ Rk, ∀ j ∈ [p]
k∑
i=1

ξi

(
Ai(x)−

p∑
j=1

y>j ei
(
vjv
>
j

))
= 0, ∀ ξ ∈ Ξ

y>j ξ ≥ 0, ∀ j ∈ [p], ξ ∈ Ξ.

We now develop an equivalent reformulation of the (re-
stricted) robust linear program PIr as a finite-dimensional
conic linear program. First notice that, since the semi-infinite
equality constraint in PIr must hold for all ξ ∈ Ξ, the linear
hull of Ξ must be contained in the nullspace of the linear
map

ξ 7→
k∑
i=1

ξi

(
Ai(x)−

p∑
j=1

y>j ei
(
vjv
>
j

))
. (18)

Moreover, since Ξ is assumed to span all of Rk, the equality
constraint holds if and only if the expression inside the
parentheses in (18) is equal to zero for all i ∈ [k]. Finally, a
direct application of Lemma 1 to the remaining semi-infinite
inequality constraints in PIr yields the finite-dimensional
conic linear program in Proposition 4, which is an equivalent
reformulation of the robust linear program PIr .

Proposition 4. Fix r ∈ N. The robust linear program PIr
admits an equivalent reformulation as a finite-dimensional
conic linear program given by

minimize c>x (19)

subject to x ∈ Rm, µ ∈ Rp, Λt ∈ Rk×p, ∀ t ∈ [d]

Ai(x) =

p∑
j=1

e>j

(
µe>1 +

d∑
t=1

Λ>t Bt

)
ei(vjv

>
j ),

∀ i ∈ [k]

Λtej ∈ C∗t , ∀ (j, t) ∈ [p]× [d]

µ ≥ 0.

Let uopt
r denote the optimal value of the above program. It

holds that uopt
r ≥ u

opt
r+1 ≥ vopt for each hierarchy level r ∈ N.

The key results from the previous two sections are sum-
marized in Theorem 3.

Theorem 3. For each hierarchy level r ∈ N, it holds that

`opt
r ≤ vopt ≤ uopt

r ≤ uopt
r .

The practical value of the results from the previous two
sections derives from the fact that one can obtain a feasible
solution to the robust semidefinite program P by solving a
finite-dimensional conic linear program, (16) or (19); and can
bound the suboptimality incurred by this feasible solution by
solving another finite-dimensional conic linear program (13).



VI. NUMERICAL STUDY

We investigate the strengths and limitations of the pro-
posed approach with a detailed numerical study.

A. Problem Description
As a concrete example, we consider the robust resistance

network design problem studied in [6], [15]. A resistance
network is an electrical network comprised of resistors and
current sources. The network is modeled by a directed graph
G = ([n], E), where [n] is the set of nodes and E is the
set of directed edges. We let (i, j) ∈ E if nodes i and j are
connected by a resistor and i < j. Some nodes are assumed
to be connected to ground. We let nφ denote the number of
nodes that are not connected to ground.

Given a fixed circuit topology, the objective is to design a
set of resistances that minimize the maximal dissipation of
the circuit (i.e., the energy consumed by the network), where
the maximum is taken over a given set U of external currents.
The set of external currents is given by

U = {Qξ | ξ ∈ Ξ},
where the matrix Q ∈ Rnφ×k is given, and Ξ is a given pa-
rameter uncertainty set satisfying the assumptions in Section
II-A. The robust resistance network design problem can be
cast as the following robust semidefinite program7

minimize τ (20)

subject to τ ∈ R, g ∈ R|E|

g ≥ 0,

1>g ≤ ω,[
τ (Qξ)>

Qξ A(g)

]
∈ S

nφ+1
+ , ∀ ξ ∈ Ξ.

Here, g ∈ R|E| denotes the vector of conductances, 1 ∈ R|E|

denotes the vector of all ones, ω ≥ 0 is a given budget
parameter, and A(g) := M diag(g)M>, where M is the nφ×
|E| submatrix of the incidence matrix of the graph G. It is
obtained by eliminating all rows associated with nodes that
are connected to ground.

We consider the specific network described by the graph
in Figure 1. Nodes 1 and 2 are assumed to be connected to
ground. Thus, nφ = 3. We let ω = 9, and set the matrix
Q ∈ R3×6 equal to

Q =

0 4 1 1.2001 0 0

0 0.020 0.09 0 1.2001 0

0 −0.050 −0.2 0 0 1.2001

 .
In what follows, we apply the inner and outer hierarchies
developed in this paper to the robust semidefinite program
(20) for three different forms of the uncertainty set Ξ. We
compare the performance of our technique with existing
results from the literature [2], [6], [7], which were described
in Section II-B.8 All numerical analyses were carried out

7We refer the reader to [15] for a detailed derivation of the semidefinite
programming formulation of this problem.

8In applying the method from [7], feasible solutions were calculated with
respect to the monomial bases u0(ξ) = (1, ξ) and u(ξ) = 1.

4
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Fig. 1: The graph G describing the electrical network. Nodes
1 and 2 are connected to ground.

using Gurobi Optimizer 6.5.0 and semidefinite programs were
solved using SDPT3 [16].

B. Unstructured Normed-Bounded Uncertainty
We consider first the case of unstructured norm-bounded

uncertainty. More precisely, we let

Ξ = {ξ ∈ R6 | ‖ξ‖2 ≤ 2, ξ1 = 1}.

Theorem 2 indicates that uncertainty sets of this form en-
able the equivalent reformulation of the robust semidefinite
program (20) as a semidefinite program. In particular, it is
straightforward to show that an optimal solution to (20) can
be obtained by solving the following semidefinite program
implied by Theorem 2:

minimize τ (21)

subject to τ ∈ R, g ∈ R|E|

g ≥ 0,

1>g ≤ ω,[
τIk Q>

Q A(g)

]
∈ S

nφ+k
+ .

Here, Ik is the k × k identity matrix. The optimal value
of (20) is equal to 2.37. And, as is shown in Table I, the
sum of squares inner approximation method of [7] yields a
feasible solution that achieves this optimal value. We also list
in Table I the optimal values of the programs POr , PIr , and
PIr for different levels r in the hierarchy. The corresponding
finite-dimensional programs (13), (16), and (19) are second-
order cone programs. Notice that the sequence of optimal
values associated with the outer polyhedral hierarchy POr
nearly converge to the optimal value of the robust SDP (20)
within the first few levels of the hierarchy.

C. Structured Normed-Bounded Uncertainty
Next, we consider the case of structured norm-bounded

uncertainty. More precisely, we let

Ξ = {ξ ∈ R6 | ‖(ξ2, ξ3)‖2 ≤ 1, ‖(ξ4, ξ5, ξ6)‖2 ≤ 1, ξ1 = 1}.

Theorem 2 provides a conservative semidefinite program
to calculate a feasible solution to (20) given uncertainty
sets with structured norm-bounds. However, the resulting
semidefinite program turns out to be infeasible for the specific



Unstructured Normed-Bounded Structured Normed-Bounded Polytopic

r r r

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

PO
r 0 0 2.25 2.34 2.36 0 1.65 3.66 4.19 4.24 0 3.40 8.17 8.17 8.17
PI
r ∞ 4.75 3.15 ∗ ∗ ∞ 6.35 5.26 ∗ ∗ ∞ 8.96 8.44 ∗ ∗
PI

r ∞ 6.72 4.94 4.56 4.55 ∞ 8.02 6.80 6.61 6.51 ∞ 8.96 8.44 8.34 8.26

Thm. 1 N/A N/A 8.20
Thm. 2 2.37 ∞ N/A

Thm. 1 [7] 2.37 4.27 8.22

TABLE I: The table lists optimal values of the outer approximation, POr , and the inner approximations, PIr and PIr , for
different levels r in the hierarchy. The corresponding finite-dimensional conic linear programs (13), (16), and (19) are
second-order cone programs when the uncertainty set is norm-bounded, and linear programs when it is polytopic. The
notation ‘*’ indicates levels in the hierarchy for which the computation of the H-representation of the polyhedral cone Inr
did not complete within three hours.

problem being studied, and therefore it provides no useful
information. Alternatively, the approximation method of [7]
yields a feasible solution having cost equal to 4.27. And,
the lower bound of 4.24 implied by the outer polyhedral
approximation POr (r = 4) implies that this feasible solution
is within a few percent of optimal.

D. Polytopic Uncertainty

Finally, we consider the case of polytopic uncertainty.
More precisely, we let

Ξ = {ξ ∈ R6 | ‖ξ‖∞ ≤ 1, Lξ ≥ 0, ξ1 = 1}.

Here, L ∈ R3×6 is a random matrix whose entries are
sampled from the standard normal distribution. It is given
by

L =

0.142 0.538 0.862 −0.434 2.769 0.725

0.422 1.834 0.319 0.343 −1.35 −0.063

0.916 −2.259 −1.308 3.578 3.035 0.715

.
In Table I, we list the optimal values of POr , PIr , and

PIr for different levels r in the hierarchy. The corresponding
finite-dimensional programs (13), (16), and (19) are linear
programs. Notice that, for r ≥ 3, PIr yields a lower cost
solution than PI2 . The last column of Table I implies that the
the optimal value of the robust semidefinite program (20)
must lie between 8.17 and 8.26. Indeed, by enumerating all
vertices of the uncertainty set Ξ and applying Theorem 1, we
are able to verify that the optimal value is equal to 8.20.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of approx-
imating solutions to intractable robust semidefinite programs.
We proposed a hierarchy of inner and outer approximations
for robust semidefinite programs, which are exact in the limit.
The proposed approximation scheme becomes impractical for
moderate levels in the hierarchy. This derives from the large
number of constraints, which arise due to the polyhedral
approximation of the positive semidefinite (PSD) cone. There
are a variety of interesting directions for future work. One

interesting direction would be to explore alternative poly-
hedral approximations of the PSD cone that rely on more
intelligent (or adaptive) discretizations of the boundary of
the cross polytope.
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