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Abstract—We investigate an approach to the approximation
of ambiguous chance constrained programs (ACCP) in which the
underlying distribution describing the random parameters is
itself uncertain. We model this uncertainty with the assumption
that the unknown distribution belongs to a closed ball centered
around a fixed and known distribution. Using only samples
drawn from the central distribution, we approximate ACCP
with a robust sampled convex program (RSCP), and establish
an upper bound on the probability that a solution to the RSCP
violates the original ambiguous chance constraint, when the
uncertainty set is defined in terms of the Prokhorov metric.
Our bound on the constraint violation probability improves
upon the existing bounds for RSCPs in the literature. We also
consider another approach to approximating ACCP by means
of a sampled convex program (SCP), which is built on samples
drawn from the central distribution. Again, we provide upper
bounds on the probability that a solution to the SCP violates
the original ambiguous chance constraint for uncertainty sets
defined according to a variety of metrics.

Index Terms—Stochastic optimization, chance constraints,
randomized algorithms, sample complexity.

I. INTRODUCTION

We consider a class of convex programs whose constraints
are parameterized by an unknown vector δ ∈ ∆ ⊆ Rm.

minimize c>x

subject to x ∈ X
f(x, δ) ≤ 0. (1)

Here x ∈ Rn is the decision variable, X ⊆ Rn is a closed
and convex set, c ∈ Rn is fixed and known, and the function
f : X ×∆ → R is closed and convex in x for each δ ∈ ∆.
We refer to (1) as an uncertain convex program (UCP).1

In the literature, there are two distinct approaches to the
treatment of uncertainty in (1) – commonly referred to as
robust and probabilistic. The robust approach prescribes the
procurement of minimum cost solutions that respect the
constraints for all δ ∈ ∆. Doing so, in general, requires the
solution of a semi-infinite convex program, if the uncertainty
set ∆ has infinite cardinality. There is, however, a large
family of constraint functions f and uncertainty sets ∆ for
which such semi-infinite programs admit exact or conser-
vative reformulations as finite-dimensional convex programs
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1The reader may refer to [1] for a discussion on the generality of such
formulation.

that can be efficiently solved [2]–[4]. Nevertheless, an impor-
tant drawback of such an approach stems from the potential
for over-conservatism in the robust solutions it prescribes.
Namely, there might be elements in the uncertainty set that
occur very rarely in practice, but manifest in a large increase
in cost by requiring that solutions obtained be feasible under
their realization. Of interest, then, are applications in which
the practioner might be willing to exchange a small reduction
in robustness of a solution for a large reduction in the cost
incurred by such solution.

Motivated by this, the probabilistic approach to the treat-
ment of uncertainty in (1) models the unknown vector δ as a
random vector and requires the problem constraints to hold
with probability no less than a desired level. More formally,
this amounts to solving the so called chance constrained
program (CCP) associated with (1); it is of the form

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε, (2)

where P denotes the probability distribution according to
which the random vector δ is defined, and ε ∈ [0, 1]
represents an acceptable probability of constraint violation.2

By allowing a slight chance of constraint violation, optimal
solutions to (2) may achieve a significantly lower cost than
their robust counterparts. Their procurement, however, stands
as a challenging computational task in general. First, with the
exception of a few cases, the chance constraint in (2) results
in a nonconvex feasible set – rendering the procurement of
globally optimal solutions a difficult task. Second, checking
as to whether the chance constraint is satisfied at a given
point requires the calculation of a multidimensional integral,
which can be costly if high accuracy is required. We refer
the reader to [9], [10] for a more nuanced discussion around
such issues, and [2] for the development of a computationally
tractable alternative to (2), which relies on the convex inner
approximation of its feasible set by means of Bernstein
inequalities.

Beyond the apparent computational difficulties inherent to
solving chance constrained programs, a more fundamental
limitation of the approach stems from the implicit assumption
that the underlying distribution, according to which the
chance constraint is defined, is fixed and exactly known.

2Chance constrained programs, in a form similar to (2), were first
introduced and studied by Charnes et al. [5], Charnes and Cooper [6], Miller
and Wagner [7], and Prékopa [8].



Such assumption is difficult to enforce in practice, where
the underlying distribution is commonly inferred from data,
and as a result, may only be known to within some accuracy.
Such issue is exasperated in settings where the procurement
of data (e.g., independent samples of δ) requires costly
experimentation. This, in turn, serves to limit the amount of
data available to calibrate an accurate estimate of the under-
lying distribution. In order to accommodate the potential for
inaccuracy in the specification of the underlying distribution,
we adopt an existing approach in the literature [2], [11]–[13],
and consider a generalization of problem (2) in the form of an
ambiguous chance constrained program (ACCP); it is defined
as

minimize c>x

subject to x ∈ X
P {f(x, δ) ≤ 0} ≥ 1− ε, ∀ P ∈ P, (3)

where P is a fixed and known set of probability distributions,
to which the underlying distribution is assumed to belong. We
refer to P as the ambiguity set. The computational tractability
of (3) depends on the way in which the ambiguity set P is
specified; and there are a variety of ways in which to do
so. The primary approach in the literature relies on moment-
based specifications [13]–[16]. We adopt an alternative ap-
proach in line with [11], [17]–[20], which defines the ambi-
guity set as a closed ball of distributions centered around a
fixed and known distribution P0, as P = {P : ρ(P,P0) ≤ r}.
Here, ρ(·, ·) denotes a suitable distance function between
probability measures supported on ∆. The radius r ≥ 0 of
the ambiguity set captures one’s confidence in the accuracy
of the nominal distribution. For r = 0, the set P reduces to
a singleton, and we recover the ambiguity-free formulation
in (2).

A. Contribution and Organization

In Section II, we adopt the approach of Erdoğan and
Iyengar [11], and approximate ACCP (3) by a robust sampled
convex program (RSCP) defined in (5). As optimal solutions
to RSCPs are themselves random variables, we establish in
Proposition 1 a bound on the probability that such solutions
violate the original ambiguous chance constraint when the
ambiguity set P is defined in terms of the Prokhorov metric.
Our bound on the constraint violation probability improves
upon the best known bound for RSCPs in the literature (cf.
Theorem 6 in [11]). Inspired by the work of [1], [21]–[23],
we also consider another approach to approximating ACCP
by means of a sampled convex program (SCP). An important
difference of our approach is that the construction of the SCP
does not require the ability to sample the true underlying
distribution, but instead requires only the ability to sample
the central distribution P0. In Section III, we provide bounds
on the probability that solutions to such SCPs violate the
original ambiguous chance constraint for ambiguity sets P
defined according to a variety of metrics. We conclude the
paper with directions for future research in Section IV.

B. Notation

Let R denote the set of real numbers and N the set of
positive integers. Given a set ∆ ⊆ Rm, we denote by
B(∆) the Borel σ-algebra on ∆, and by M(∆) the set of
all probability measures on the space (∆,B(∆)). Given an
integer N and a measure P ∈M(∆), we denote by PN the
product measure on the space (∆N ,B(∆)N ).

II. ROBUST SAMPLED CONVEX PROGRAMS

A. Ambiguity Set

As in [11], we consider ambiguity sets defined in terms of
the Prokhorov metric ρp, which is defined as follows. Given
two probability measures P, Q ∈ M(∆), the Prokhorov
metric is defined as

ρp(P,Q) := inf{γ > 0 : P{A} ≤ Q{Aγ}+ γ, ∀ A ∈ B(∆)},

where Aγ := {y ∈ ∆ : infz∈A ‖y − z‖ < γ} denotes the
γ-neighborhood of the set A. Here, ‖ · ‖ is a suitable norm
on the space ∆. Essentially, the Prokhorov metric measures
the minimum distance in probability between two random
variables distributed according to P and Q, respectively.
Although the metric is difficult to compute in practice, there
are inequalities relating it to a host of other metrics and
distance functions, which are more easily calculated. We
refer the reader to Billingsley [24] for more details on the
Prokhorov metric and Gibbs and Su [25] for a survey.

With this metric in hand, we define our ambiguity set as
a ball of distributions given by

P = {P ∈M(∆) : ρp(P,P0) ≤ r}. (4)

The ambiguity set is parameterized by the central distribution
P0 ∈ M(∆) and the radius of the ambiguity set r ≥ 0. For
the purpose of this paper, we assume that P0 and r are fixed
and known. As to how they might be inferred from data, is an
active area of research in and of itself [26], [27], and beyond
the scope of this paper.

Taking the ambiguity set P to be defined according to
(4), we describe the feasible set of the corresponding ACCP
defined in (3) as

X rε :=

{
x ∈ X : inf

P∈P
P {f(x, δ) ≤ 0} ≥ 1− ε

}
.

Note that in the absence of distributional ambiguity (i.e.,
r = 0), the set X 0

ε corresponds to the feasible set of the
chance constrained program (2) defined in terms of the
central distribution P0.

B. Robust Sampled Convex Programs (RSCP)

We adopt the approach of [11], and approximate the
ambiguous chance constrained program by a robust sampled
convex program (RSCP) defined as follows. Fix an integer
N ≥ n, and let (δ1, . . . , δN ) be a collection of N independent
and identically distributed random variables defined accord-
ing to the central distribution P0. Given a realization of the



random variables (δ1, . . . , δN ), the corresponding RSCP is
defined as

minimize c>x

subject to x ∈ X
f(x, z) ≤ 0, ∀ z ∈

N⋃
i=1

Br(δi) ∩∆, (5)

where Br(δi) := {z ∈ Rm : ‖z − δi‖ ≤ r} is a closed
ball of radius r centered at the sample δi. For r > 0, the
robust sampled convex program (5) amounts to a semi-infinite
convex program, which can be efficiently solved, under
suitable choice of norm, for certain families of constraint
functions f and uncertainty sets ∆.3 We make the following
assumption, in a similar fashion to [22],

Assumption 1. For each collection of samples
(δ1, . . . , δN ) ∈ ∆N , the corresponding RSCP defined
in (5) has a feasible set with a nonempty interior, and a
unique optimal solution.

C. Probabilistic Guarantees for RSCP

We denote the optimal solution of the RSCP by x̂rN ∈ X .
It is itself a random variable, as it depends implicitly on the
collection of samples used to define the feasible region of the
RSCP. It is natural then to ask, what is the probability that an
optimal solution to RSCP is feasible for the original ACCP?
Or, instead, what is the number of samples required in order
that an optimal solution to RSCP be feasible for ACCP with
high probability? To a large extent, these questions have been
resolved by [21], [22] for the ambiguity-free case in which
r = 0. We briefly summarize their results within the context
of our formulation.

First notice that, for r = 0, the RSCP (5) simplifies to the
so called sampled convex program (SCP) defined as:

minimize c>x

subject to x ∈ X
f(x, δi) ≤ 0, i = 1, . . . , N. (6)

We state the following result from [21], [22] for r = 0.

Theorem 1. Fix 0 ≤ ε ≤ 1. Let Assumption 1 hold. It
follows that

PN0
{
x̂0
N /∈ X 0

ε

}
≤ Φ(ε),

where

Φ(ε) :=


1, ε ∈ (−∞, 0],∑n−1
i=1

(
N
i

)
εi(1− ε)N−i, ε ∈ (0, 1],

0, ε ∈ (1,∞).

Essentially, Theorem 1 provides an upper bound on the
probability that an optimal solution to the SCP (6) violates
the (ambiguity-free) chance constraint defined in terms of the
central distribution P0. We prove the following Proposition,
which builds upon Theorem 1 to establish an upper bound on

3We refer the reader to [3] for a comprehensive treatment of tractable
robust convex programs.

the constraint violation probability of x̂rN when the radius of
the ambiguity set is greater than or equal to zero. We defer
its proof to Appendix A.

Proposition 1. Fix 0 ≤ ε ≤ 1 and 0 ≤ r. Let Assumption 1
hold. It follows that

PN0 {x̂rN /∈ X rε } ≤ Φ(ε− r).

The upper bound Φ(ε−r) on the probability that a solution
to RSCP violates the ambiguous chance constraint has several
interesting properties. First, notice that, for r = 0, we recover
the ambiguity-free result of Theorem 1. For ambiguity sets
with positive radii r > 0, the upper bound on the constraint
violation probability is monotonically nondecreasing in r,
and converges to one as r → ∞. A particular weakness of
Proposition 1 derives from the fact that Φ(ε − r) = 1 for
r ≥ ε. In other words, the upper bound provides no useful
information when the radius of the ambiguity set r (defined
in terms of the Prokhorov metric) exceeds the allowable risk
of constraint violation ε.

As a trivial corollary to Proposition 1, one can establish
a lower bound on the number of samples required in order
that constraint violation probability does not exceed a desired
level.

Corollary 1. Fix β ∈ (0, 1), ε ∈ (0, 1), and r ∈ [0, ε). Let
Assumption 1 hold. Define

N(ε− r, β) := min {N ∈ N : Φ(ε− r) ≤ β} . (7)

If the number of samples satisfies N ≥ N(ε − r, β), then
PN0 {x̂rN /∈ X rε } ≤ β. Moreover, it holds that

N(ε− r, β) ≤ 2

ε− r
(
lnβ−1 + n

)
. (8)

We omit the proof of Corollary 1, as the inequality (8) was
first shown in [28].

D. Comparison with the Literature

We briefly discuss the relationship between the bound
established in Proposition 1 and known bounds for RSCPs in
the literature. In Theorem 6 of [11], the authors prove that,
for 0 ≤ r < ε < 1,

PN0 {x̂rN /∈ X rε } ≤
(
eN

n

)n
e−(ε−r)(N−n). (9)

First, unlike the upper bound in Proposition 1, the bound in
(9) does not recover the ambiguity-free result of Theorem 1
for r = 0. Second, the number of samples required by (9) to
ensure that PN0 {x̂rN /∈ X rε } ≤ β can far exceed the sample
size requirement defined in (7). In order to make a direct
comparison, we define sample size requirement implied by
the bound in (9) as

N(ε− r, β) := min

{
N ∈ N :

(
eN

n

)n
e−(ε−r)(N−n) ≤ β

}
.

We include a comparison of N(ε − r, β) and N(ε − r, β)
in Table I. In many cases, the new sample size requirement
improves upon the existing one by as much as an order of
magnitude.



TABLE I
SAMPLE SIZE REQUIREMENTS N(ε− r, β) VERSUS N(ε− r, β) FOR

DIFFERENT VALUES OF ε, GIVEN n = 10, r = 0.1 AND β = 10−5 .

ε 0.15 0.125 0.11 0.105 0.1025 0.101

N(ε− r, β) 581 1171 2942 5895 11799 29513
N(ε− r, β) 1434 3175 8960 19460 41986 115027

III. SAMPLED CONVEX PROGRAMS

In this section, we explore an approach to approximat-
ing the ambiguous chance constrained program (ACCP) by
means of a sampled convex program (SCP), defined previ-
ously in (6). Recall that we denote the optimal solution of
the SCP by x̂0

N ∈ X . Our aim is to derive an upper bound on
the probability that such a solution violates the ambiguous
chance constraint when the ambiguity set has radius r > 0.
More formally, we seek upper bounds on the probability
PN0
{
x̂0
N /∈ X rε

}
.

In pursuit of such bounds, we abandon the use of the
Prokhorov metric, and consider ambiguity sets defined ac-
cording to a variety of other metrics, which we presently
define. In each of the following definitions, we let P, Q ∈
M(∆) and denote by p and q their respective probability
densities with respect to the Lebesgue measure µ on ∆.

• Total variation metric, ρtv:

ρtv(P,Q) := sup
A∈B(∆)

|P{A} −Q{A}| .

• Hellinger metric, ρh:

ρh(P,Q) :=

(∫
∆

(
√
p−√q)2

dµ

) 1
2

.

• Relative entropy distance, ρe:

ρe(P,Q) :=

∫
∆

p ln

(
p

q

)
dµ.

• χ2-distance, ρχ2 :

ρχ2(P,Q) :=

∫
S(P)∪S(Q)

(p− q)2

q
dµ,

where S(·) represents the support of the probability
distribution on ∆.

We consider ambiguity sets of the form P = {P ∈ M(∆) :
ρ(·)(P,P0) ≤ r} for each of the previously defined metrics
ρ(·). As a matter of notational convenience, we leave the
dependency of the ambiguity set on the specific metric
unspecified, unless it is otherwise unclear from the context.

A. Probabilistic Guarantees for SCP

The crux of our approach centers on the conservative
approximation of the ambiguous chance constraint in (3) as
an ambiguity-free chance constraint defined in terms of the
central distribution P0. In order to do so, we first define the

perturbed risk level νrε ∈ [0, 1] associated with the ambiguity
set P as

νrε := sup{α : P0 {A} ≤ α⇒ sup
P∈P

P {A} ≤ ε, ∀A ∈ B(∆)},

where we define νrε = 0 if the above problem is infeasible.
Clearly, it holds that νrε ≤ ε. And, although left implicit, we
emphasize that the perturbed risk level depends critically on
the underlying distance function used to define the ambiguity
set P . Using the perturbed risk level of the ambiguity
set, one can convert ACCP into an ambiguity-free chance
constrained program under the central distribution P0. The
resulting chance constrained program can then be directly
approximated using SCP. Using the perturbed risk level νrε ,
we establish an upper bound on the probability that solutions
to SCP violate the ambiguous chance constraint.

Lemma 1. Fix 0 ≤ ε ≤ 1 and 0 ≤ r. Let Assumption 1 hold
for the corresponding SCP defined in (6). It follows that

PN0
{
x̂0
N /∈ X rε

}
≤ Φ(νrε ).

Moreover, it holds that Φ(νrε ) ≤ Φ(ν) for all ν ≤ νrε .

We defer the proof of Lemma 1 to Appendix B. We remark
that the calculation of perturbed risk level νrε can be com-
putationally challenging. However, Lemma 1 suggests that
a lower bound on νrε is sufficient to obtain an upper bound
on the constraint violation probability of x̂0

N . In Proposition
2, we establish several such lower bounds for a variety of
distance functions. We omit the proof of Proposition 2 due
to space constraints.

Proposition 2. Fix 0 ≤ ε ≤ 1 and 0 ≤ r. For each of
the following distance functions, the corresponding perturbed
risk level νrε satisfies the lower bound:

(a) Total variation metric, ρtv:

νrε ≥ ε− r.

(b) Hellinger metric, ρh:

νrε ≥ max
(√
ε− r, 0

)2
.

(c) Relative entropy distance, ρe:

νrε ≥ sup
λ>0

e−r(λ+ 1)ε − 1

λ
.

(d) χ2-distance, ρχ2 :

νrε ≥ ε+
r

2
−
√
rε+

r2

4
.

We remark that the lower bound in (c) was shown to hold
with equality in [18]. In Figure 1, we plot the lower bounds
on the perturbed risk level for each of the distance functions
considered.
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Fig. 1. Plot of lower bound from Proposition 2 on the perturbed risk level
νrε versus r for ε = 0.2. Each curve corresponds to a different distance
function.

TABLE II
UPPER BOUNDS ON THE SAMPLE SIZE REQUIREMENT N(νrε , β) VERSUS
ε FOR AMBIGUITY SETS DEFINED IN TERMS THE TOTAL VARIATION

METRIC (Ntv ), HELLINGER METRIC (Nh), RELATIVE ENTROPY
DISTANCE (Ne), AND χ2-DISTANCE (Nχ2 ). HERE, n = 10, r = 0.1 AND

β = 10−5 .

ε 0.2 0.15 0.125 0.11 0.105 0.1025 0.101

Ntv 285 581 1171 2942 5895 11799 29513
Nh 235 348 449 540 578 599 612
Ne 444 762 1098 1438 1591 1678 1734
Nχ2 285 426 552 664 711 736 752

N0 137 187 226 258 271 278 282

B. Sample Size Requirements

We briefly discuss the sample size requirements implied
by Lemma 1 and Proposition 2. Given a desired confidence
level β ∈ (0, 1), it follows from Lemma 1 that

N ≥ N(νrε , β) =⇒ PN0
{
x̂0
N /∈ X rε

}
≤ β.

One can further bound N(νrε , β) from above by using the
lower bounds on the perturbed risk level νrε specified in
Proposition 2. We include, in Table II, a list of the resulting
sample size requirements versus ε, for n = 10, r = 0.1 and
β = 10−5. We denote by Ntv, Nh, Ne, and Nχ2 the sample
size requirement associated with the total variation metric,
Hellinger metric, relative entropy distance, and χ2-distance,
respectively. Finally, N0 := N(ε, β) denotes the sample size
required by the ambiguity-free setting (r = 0).

Table II reveals that, for a fixed radius r, the choice of
metric used to define the ambiguity set can have a dramatic
effect on the resulting sample size requirement. In particular,
for ε = .101, the sample size requirement implied by the
total variation metric is two orders of magnitude larger than
the sample size requirement associated the χ2-distance or
Hellinger metric.

IV. CONCLUSION

The results presented in this paper rely on the assump-
tion of a fixed and known ambiguity set. In practice, such
ambiguity sets would have to be inferred from data. Ac-
cordingly, it would be of interest to explore the extent to

which the techniques and results presented in this paper
might be extended to the setting in which the optimizer
is required to construct an ambiguity set given access to
only a limited number of IID samples drawn from the true
underlying distribution. One natural approach might entail the
specification of the ambiguity set as a ball of distributions
centered around the empirical distribution associated with the
given samples. The greater the sample size, the more accurate
is the empirical distribution, and the smaller is the radius of
the implied ambiguity set – probabilistically speaking that
is. It is therefore natural to ask as to whether the results
presented in this paper might be generalized to accommodate
ambiguity sets to which the true distribution is known to
belong with high probability.

APPENDIX

A. Proof of Proposition 1

The case of ε − r ≤ 0 is trivial, as we can upper bound
the constraint violation probability by 1 = Φ(ε− r). For the
remainder of the proof, assume instead that ε− r > 0.

Fix x ∈ X . The constraint (5) is equivalent to

sup
z∈

⋃N
i=1 Br(δi)∩∆

f(x, z) ≤ 0,

which can also be represented as

max
i=1,··· ,N

{
sup

z∈Br(δi)∩∆

f(x, z)

}
≤ 0.

Define g(x, δ) = sup
z∈Br(δ)∩∆

f(x, z). Since f(x, z) is closed

and convex in x for each z, the function g(x, δ) is also convex
and closed in x for each δ ∈ ∆. We can therefore equivalently
reformulate the RSCP (5) as a SCP given by

minimize c>x

subject to x ∈ X
g(x, δi) ≤ 0, i = 1, . . . , N,

It follows from Assumption 1 that the resulting SCP has a
feasible set with a nonempty interior, and a unique optimal
solution x̂rN .

Let A = {δ ∈ ∆ : f(x, δ) > 0} ∈ B(∆). In what follows,
we show that Ar ⊆ {δ ∈ ∆ : g(x, δ) > 0}. By definition,
we have that

y ∈ Ar ⇔ ∃ z ∈ A, ‖y − z‖ < r.

This means that there exists z ∈ Br(y) ∩ A ⊆ Br(y) ∩ ∆
such that f(x, z) > 0. It follows that g(x, y) ≥ f(x, z) > 0
and y ∈ {δ ∈ ∆ : g(x, δ) > 0}.

According to the definitions of the Prokhorov metric and
the ambiguity set, we have

P0 {g(x, δ) > 0}+ r ≥ P {f(x, δ) > 0}

for all P ∈ P . It follows that

x̂rN 6∈ X rε ⇔ sup
P∈P

P {f(x̂rN , δ) > 0} > ε

⇒ P0 {g(x̂rN , δ) > 0}+ r > ε.



Hence,

PN0 {x̂rN /∈ X rε } ≤ PN0 {P0 {g(x̂rN , δ) > 0} > ε− r} ,

and the proposition follows from Theorem 1.

B. Proof of Lemma 1

To prove the lemma, we consider two cases separately: (i)
νrε = 0, and (ii) νrε > 0.

(i) The case of νrε = 0 is trivial, as PN0
{
x̂0
N /∈ X rε

}
≤ 1 =

Φ (νrε ).

(ii) We now prove the lemma for the case of νrε > 0. When
x̂0
N 6∈ X rε , it holds that ∃P ∈ P such that

P
{
f(x̂0

N , δ) > 0
}
> ε.

Hence, it follows from the definition of the perturbed risk
level νrε that

P0

{
f(x̂0

N , δ) > 0
}
> ν ∀ νrε > ν > 0

As a result,

PN0
{
x̂0
N /∈ X rε

}
≤ PN0

{
P0

{
f(x̂0

N , δ) > 0
}
> ν

}
= PN0

{
x̂0
N /∈ X 0

ν

}
≤ Φ(ν)

The last inequality follows from Theorem 1. Since the
function Φ is continuous, we have that

PN0
{
x̂0
N /∈ X rε

}
≤ lim
ν→νrε

Φ(ν) = Φ(νrε ).

Finally, since Φ is a monotonic non-increasing function,
we have that Φ(νrε ) ≤ Φ(ν) for all ν ≤ νrε , thus completing
the proof.
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[9] A. Prékopa, Stochastic programming. Springer Science & Business
Media, 2013, vol. 324.

[10] A. P. Ruszczynski and A. Shapiro, Stochastic programming. Elsevier
Amsterdam, 2003, vol. 10.
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