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Abstract—We consider the decentralized reactive power
control of photovoltaic (PV) inverters spread throughout a
radial distribution network. Our objective is to minimize
the expected voltage regulation error, while guaranteeing the
robust satisfaction of distribution system voltage magnitude
and PV inverter capacity constraints. Our approach entails
the offline design and the online implementation of the decen-
tralized controller. In the offline control design, we compute
the decentralized controller through the solution of a robust
convex program. Under the restriction that the decentralized
controller have an affine disturbance feedback form, the
optimal solution of the decentralized control design problem
can be computed via the solution of a finite-dimensional
conic program. In the online implementation, we provide a
method to implement the decentralized controller at a time-
scale that is fast enough to counteract the fluctuations in
the system disturbance process. The resulting trajectories
of PV inverter reactive power injections and nodal voltage
magnitudes are guaranteed to be feasible for any realization
of the system disturbance under the proposed controller.
We demonstrate the ability of the proposed decentralized
controller to effectively regulate voltage over a fast time-
scale with a case study of the IEEE 123-node test feeder.

I. INTROUDCTION

The installation of rooftop and community solar facil-
ities continues to increase in the United States. In Cali-
fornia, for example, approximately 40% of all electricity
demand was served by solar energy on the afternoon of
May 13, 2017 [1]. Meanwhile, the increasing penetration
of rooftop and community solar resources brings new
challenges to voltage regulation in distribution networks
[2], including overvoltage in distribution networks and de-
teriorated power quality due to rapid fluctuation in feeder
voltage magnitudes. Traditional techniques for voltage
regulation, such as the deployment of on-load tap changing
(OLTC) transformers and shunt capacitors, are limited in
their ability to address these challenges. Specifically, the
tap positions of OLTC transformers cannot be changed at a
fast time-scale due to mechanical limitations [3], and shunt
capacitors cannot be switched on and off frequently due
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to the large inrush current that results during switching
operations [4]. Photovoltaic (PV) inverters, on the other
hand, do not suffer from these limitations. Their reactive
power injections can be actively controlled at a time-
scale that is fast enough to counteract the fluctuation in
demand and PV active power supply. Our objective in this
paper is to develop a systematic approach to the design
of decentralized controllers for PV inverters, in order to
effectively regulate network voltage profile in real-time,
while guaranteeing the robust satisfaction of network and
individual inverter constraints.

Related Work: A large swath of literature treats the
reactive power management of PV inverters as a central-
ized optimal power flow (OPF) problem, which aims to
minimize a network-wide objective function (e.g., volt-
age regulation error) subject to network and resource
constraints [5]–[10]. To set its reactive power injection,
each PV inverter communicates its local measurements
of demand and PV active power supply to a central
computer. Using this data, the central computer solves a
centralized OPF problem, and subsequently transmits the
optimal solution back to each inverter for local imple-
mentation. Due to the rapid variation in the active power
supply from PV resources, the reactive power injections
of PV inverters need to be updated repeatedly over a
fast time-scale (e.g., every minute). In the presence of
a large number of PV inverters, the implementation of
such reactive power control methods might be impractical,
as the time required for computation and communication
might exceed the time-scale at which the inverter control
needs to be implemented.

This challenge in practical implementation gives rise
to the need for decentralized and distributed optimization
methods. In particular, there has emerged a recent stream
of literature developing fully decentralized optimization
methods, which enable the real-time control of PV reac-
tive power injections using only local measurements of
nodal complex power injections and voltage magnitudes
[11]–[16]. Under the assumption that the underlying OPF
problem being solved is time-invariant, the sequence of
reactive power injection profiles computed using these
decentralized methods is guaranteed to asymptotically con-
verge to a feasible injection profile that respects both the
network voltage and individual inverter constraints. There

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50227
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 2680



is, however, no guarantee on the constraint-satisfaction
of these methods in finite time. Distributed optimization
methods, on the other hand, rely on the explicit exchange
of information between neighboring controllers in com-
puting reactive power injections from PV inverters [17]–
[23]. Given the satisfaction of certain requirements on
the communication network specific to the optimization
method being used, the sequence of reactive power injec-
tion profiles computed using these distributed optimization
methods is guaranteed to converge asymptotically to a
globally optimal solution of the OPF problem.

The aforementioned methods rely on a static OPF for-
mulation of the reactive power control problem. In partic-
ular, the resulting OPF problem is parameterized by static
demand and PV active power supply data. As a result,
the implementation of these methods requires that demand
and PV active power supply remain constant within the
time interval during which the resulting optimal control
is applied. Such an assumption is likely to be violated in
practice, as demand and PV active power supply might
vary at a time-scale that is much faster than the time-
scale needed for the computation and communication of
the control inputs. This problem is partially addressed
in [24], in which the system disturbance is treated as a
random vector, and the optimal open-loop PV reactive
power injections are computed to minimize the expected
cost of serving demand. However, the performance of
the resulting controller might be poor due to absence of
feedback.

Contribution: The setting we consider entails the de-
centralized reactive power control of PV inverters spread
throughout a radial distribution network, subject to un-
certainty in demand and PV active power supply. Our
approach to the decentralized control of PV inverters
involves the offline design and the online implementation
of the decentralized controller. In the offline control de-
sign, our objective is to minimize the expected voltage
regulation error, while guaranteeing the robust satisfaction
of distribution system voltage magnitude and PV inverter
capacity constraints. The resulting decentralized control
design problem amounts to a robust convex program. In
the online implementation, we deploy the decentralized
controller at each individual inverter, and implement the
controller at a time-scale fast enough to counteract fluc-
tuations in demand and PV active power supply. Our
primary contributions are two-fold. First, we present a
systematic approach to the computation of decentralized
affine controllers via the solution of a finite-dimensional
conic program.1 In particular, this approach to the compu-

1It should be noted that, subsequent to the initial submission of the
present paper, Jabr in [25] has independently proposed a similar approach
to the design of affine disturbance-feedback control laws for PV inverters
under a different linear approximation of the AC power flow equations.

tation of decentralized controllers does not require a priori
knowledge of the demand and PV active power supply
realizations. Second, we provide a method to implement
the decentralized affine controller over arbitrarily fast time-
scales (up to seconds). The proposed method is guaran-
teed to yield trajectories of PV inverter reactive power
injections and nodal voltage magnitudes that are robustly
feasible.

Organization: The remainder of this paper is organized
as follows. Section II describes the distribution network,
load, and PV inverter models. Section III formulates
the decentralized control design problem, and presents
a method to compute the optimal decentralized affine
controller via the solution of a finite-dimensional conic
program. Section IV describes an approach to enable real-
time implementation of the decentralized affine controller.
Section V demonstrates the proposed techniques with a
numerical study of the IEEE 123-node test feeder. Section
VI concludes the paper.

Notation: Let R denote the set of real numbers. For
two real numbers a ≤ b, Uni [a, b] denotes the uniform
distribution on [a, b]. We denote by In the n-by-n identity
matrix, by 0m×n the m-by-n zero matrix, and by 1m×n the
m-by-n matrix of all ones. Subscripts are omitted when the
underlying matrix dimension is clear from the context. We
denote the trace of a square matrix A by Tr (A). We denote
the Kronecker product operator by ⊗. Finally, we denote
by K a proper cone (i.e., convex, closed, and pointed with
a nonempty interior). Let K∗ denote its dual cone. We
write x �K y to indicate that x− y ∈ K. For a matrix A
of appropriate dimension, A �K 0 denotes its columnwise
inclusion in K.

II. NETWORK AND RESOURCE MODELS

A. Branch Flow Model

Consider a radial distribution network whose topol-
ogy is described by a rooted tree G = (V, E), where
V = {0, 1, .., n} denotes its set of nodes, and E its set
of (directed edges) distribution lines. In particular, node
0 is defined as the root of the network, and represents
the substation that connects to the external power system.
Each directed distribution line admits the natural orienta-
tion, i.e., away from the root. For each distribution line
(i, j) ∈ E , we denote by rij + ixij its impedance, whose
real and imaginary parts are both assumed to be strictly
positive. In addition, define Iij as the complex current
flowing from node i to j, and pij + iqij as the complex
power flowing from node i to j. For each node i ∈ V , let
vi denote its voltage magnitude, and pi + iqi the complex
power injection at this node. We assume that the voltage
magnitude v0 at the substation is fixed and known.

We employ the branch flow model proposed in [26], [27]
to describe the steady-state, single-phase AC power flow
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equations associated with this radial distribution network.
In particular, for each node j = 1, . . . , n, and its unique
parent i ∈ V , we have

−pj = pij − rij`ij −
∑

k:(j,k)∈E

pjk, (1)

−qj = qij − xij`ij −
∑

k:(j,k)∈E

qjk, (2)

v2j = v2i − 2(rijpij + xijqij) + (r2ij + x2ij)`ij , (3)

`ij = (p2ij + q2ij)/v
2
i , (4)

where `ij = |Iij |2. We note that the branch flow model is
well defined only for radial distribution networks, as we
require that each node j (excluding the substation) have a
unique parent i ∈ V .

For the remainder of the paper, we consider a linear
approximation of the branch flow model (1)–(4) based on
the Simplified Distflow method developed in [28]. The
derivation of this approximation relies on the assumption
that `ij = 0 for all lines (i, j) ∈ E , as the power losses
on distribution lines are considered to be small relative
to the power flows. According to [16], [29], such an
approximation tends to introduce a relative model error of
1–5% in calculating power flows for practical distribution
networks. Under this assumption, Eqs. (1)–(3) can be
simplified to

−pj = pij −
∑

k:(j,k)∈E

pjk, (5)

−qj = qij −
∑

k:(j,k)∈E

qjk, (6)

v2j = v2i − 2(rijpij + xijqij). (7)

The linearized branch flow Eqs. (5)–(7) can be written
more compactly as

v2 = Rp+Xq + v201. (8)

Here, v2 = (v21 , .., v
2
n), p = (p1, .., pn), and q = (q1, .., qn)

denote the vectors of squared nodal voltage magnitudes,
real power injections, and reactive power injections, re-
spectively. The matrices R,X ∈ Rn×n are defined ac-
cording to

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk,

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk,

where Pi ⊂ E is defined as the set of edges on the unique
path from node 0 to i. As is shown in [16], the matrices
R and X are guaranteed to be positive definite, since the
resistance and reactance of each distribution line are both
strictly positive. In particular, the positive definiteness of
the matrix X guarantees the uniqueness of the optimal

solution to the robust convex program that we analyze in
Section III.

For the remainder of this paper, we impose voltage
magnitude constraints of the form

v2 ≤ v2 ≤ v2, (9)

where the allowable range of squared voltage magnitudes
is defined by the lower and upper limits v2, v2 ∈ Rn.

B. Photovoltaic Inverter Model

We consider a distribution system consisting of n photo-
voltaic (PV) inverters whose reactive power injections can
be actively controlled. For the inverter at node i (excluding
the substation), we denote by ξIi + iqIi its complex power
injection, and sIi its nameplate apparent power capacity.
Due to the intermittency of solar irradiance, we will
model the active power injection ξIi as a random variable,
whose precise specification is presented in Section II-D.
Additionally, we assume that the maximum value of the
random variable ξIi is fixed and known, which we denote
by pIi . Clearly, it must hold that pIi ≤ sIi . We require that
the reactive power injections respect capacity constraints
of the form:∣∣qIi ∣∣ ≤√sIi

2 − ξIi
2
, i = 1, . . . , n. (10)

In the sequel, it will be convenient to work with a
polyhedral inner approximation of the set of feasible com-
plex power injections from the PV inverter. Namely, we
consider the following inner approximation to constraint
(10):

|qIi | ≤ sIi − aiξIi , (11)

where the coefficient ai is defined according to

ai =

(
sIi −

√
sIi

2 − pIi
2
)/

pIi .

Constraint (11) approximates the set of feasible complex
power injections from the PV inverter from within as a
trapezoid. We provide a graphical illustration of this inner
approximation in Figure 1(b). The constraints in (11) can
be equivalently expressed in vector form as

|qI | ≤ sI −AξI .

Here, ξI = (ξI1 , . . . , ξ
I
n), qI = (qI1 , . . . , q

I
n), and sI =

(sI1, . . . , s
I
n) denote the vectors of active power injections,

reactive power injections, and nameplate apparent power
capacities of PV inverters, respectively. Also, |qI | denotes
the element-wise absolute value of the vector qI . The
matrix A is defined as A = diag(a1, . . . , an).
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Fig. 1: The above plots depict an inverter’s range of
feasible complex power injections (in gray) as specified
by (a) the original quadratic constraints (10) and (b) the
inner linear constraints (11).

C. Load Model
Each node in the distribution network (apart from the

substation) is assumed to have a constant power load.
Accordingly, we denote by ξpi ∈ R and ξqi ∈ R the
active and reactive power demand, respectively, at node
i. To accommodate a priori uncertainty in realizations of
active and reactive power demand, we model them as
random variables—their precise specification is presented
in Section II-D. The nodal active and reactive power
balance equations can be expressed as

pi = ξIi − ξ
p
i ,

qi = qIi − ξ
q
i ,

where pi ∈ R and qi ∈ R denote the net active and reac-
tive power injections, respectively, at node i ∈ {1, . . . , n}.

D. Uncertainty Model
As indicated earlier, we model the active power demand,

reactive power demand, and PV active power supply as
random variables. As a notational convention, we represent
random vectors in boldface, and represent their realizations
in normal face. Accordingly, we associate with each node
i a local disturbance defined as ξi = (ξpi , ξ

q
i , ξ

I
i ), which

takes value in R3. We define the system disturbance
according to the random vector

ξ = (1, ξ1, . . . , ξn), (12)

which takes value in RNξ , where Nξ = 1+3n. Note that,
in our specification of the system disturbance ξ, we have
included a constant scalar as its initial component. Such
notational convention will prove useful in simplifying the
specification of affine control policies in the sequel.

We assume that the system disturbance ξ has support
Ξ that is a nonempty and compact subset of RNξ , repre-
sentable as

Ξ = {ξ ∈ RNξ | e>1 ξ = 1 and Wξ �K 0},

where the matrix W ∈ R`×Nξ is known, and e1 is the
first standard basis vector in RNξ . It follows from the
compactness of Ξ that the second-order moment matrix

M = E
[
ξξ>

]
is finite-valued. We assume, without loss of generality, that
M is a positive definite matrix. We emphasize that our
specification of the system disturbance ξ captures a large
family of disturbances, including those whose support can
be described as the intersection of polytopes and ellipsoids.

III. DECENTRALIZED CONTROL DESIGN VIA CONVEX
OPTIMIZATION

We now describe our approach to the decentralized
reactive power control of PV inverters. Specifically, we
restrict our attention to the setting in which the reactive
power injections from PV inverters are determined accord-
ing to a decentralized affine disturbance-feedback control
policy. That is, each PV inverter determines its reactive
power injection according to an affine function of its local
disturbance. Our objective is to minimize the expected
voltage regulation error, subject to network voltage mag-
nitude and PV inverter capacity constraints.2 The resulting
decentralized control design problem amounts to a robust
convex program. We show that its optimal solution can be
computed by solving a finite-dimensional conic program.

A. Controller Information Structure

The controller information structure we consider in
this paper is such that each PV inverter determines its
reactive power injection based only on its measurements
of local disturbance.3 That is, we restrict ourselves to
fully decentralized disturbance-feedback controllers. The
determination of an optimal decentralized controller re-
quires the solution of an infinite-dimensional optimization
problem (cf. [31]), and is, in general, computationally
intractable. We thus resort to approximation, and consider
decentralized controllers that are affine in the system
disturbance.4 Specifically, we consider decentralized affine
controllers of the form

qIi = qIi +QIi ξi,

2We note that the control design methodology proposed in this paper
is general enough to accommodate power loss minimization objectives
as well. We omit this treatment for the sake of brevity.

3For the ease of exposition, we assume that each PV inverter has access
to perfect measurements of its local disturbance. We remark, however,
that all our subsequent results can be generalized to the setting in which
each PV inverter has partial linear observations of its local disturbance.
We refer the readers to [30] for a detailed treatment of such problems.

4We note that it is possible to improve the performance of the
decentralized controller computed in this paper by enlarging the set
of admissible decentralized controllers. One example is to consider
decentralized controllers that are polynomial or piecewise affine in the
system disturbance.
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for each node i = 1, . . . , n. Here, qIi ∈ R represents the
open-loop component of the local control, and QIi ∈ R1×3

is the feedback control gain matrix. We write this affine
controller more compactly as

qI = QIξ, (13)

where the matrix QI ∈ Rn×Nξ is given by

QI =

q
I
1 QI1
...

. . .
qIn QIn

 . (14)

We denote by S ⊆ Rn×Nξ the linear subspace of all
matrices of the form specified by Eq. (14). Clearly, a
matrix QI ∈ Rn×Nξ corresponds to a decentralized affine
controller if and only if QI ∈ S.

B. Design of Disturbance-feedback Affine Controllers

Our objective is to design a decentralized affine con-
troller that minimizes the expected voltage regulation error,
while guaranteeing the satisfaction of network voltage
magnitude and PV inverter capacity constraints for all
possible realizations of the system disturbance ξ. In what
follows, we formulate the resulting decentralized control
design problem as a robust convex program. In Theorem 1,
we show that its optimal solution can be computed via the
solution of an equivalent finite-dimensional conic program.

We first specify the affine map, which relates the system
disturbance to the vectors of nodal active and reactive
power injections. Namely, under the decentralized affine
controller specified according to Eq. (13), we have

p = Pξ, (15)

q = Qξ +QIξ, (16)

where the matrices P and Q are given by

P =
[
0 In ⊗

[
−1 0 1

]]
,

Q =
[
0 In ⊗

[
0 −1 0

]]
.

We measure the performance of a decentralized affine
controller according to the expected Euclidean distance
between the desired and the induced vector of squared
voltage magnitudes. In particular, we define the desired
vector of voltage magnitudes as vi = v0 for all i ∈ V .

Accordingly, we define the decentralized control design
problem as:

minimize E
[ ∥∥v2 − v201

∥∥2
2

]
subject to QI ∈ S,

v2 = Rp+Xq + v201,

p = Pξ,

q = Qξ +QIξ,

|QIξ| ≤ sI −AξI
v2 ≤ v2 ≤ v2

}
∀ξ ∈ Ξ,

(17)

where the decision variables are the matrix QI and the
random vectors v2, p, and q. In what follows, we write
problem (17) more concisely by eliminating the decision
variables v2, p, and q. First note that v2 can be equiva-
lently written as the following affine function of the system
disturbance ξ:

v2 = V ξ + v201, (18)

where the matrix V ∈ Rn×Nξ is given by

V = RP +XQ+XQI .

Additionally, we represent the m = 4n robust linear
constraints in problem (17) more succinctly as

FQIξ +Gξ ≤ 0 (19)

where the matrices F and G can be constructed from the
underlying problem data. Their exact specification is given
in Appendix A. We can now write problem (17) more
compactly as

minimize E
[
‖V ξ‖22

]
subject to QI ∈ S, V ∈ Rn×Nξ ,

V = RP +XQ+XQI ,

FQIξ +Gξ ≤ 0 ∀ξ ∈ Ξ.

(20)

The decentralized control design problem (20) amounts
to a robust convex program, which can be solved offline.
The decentralized affine control policy computed accord-
ing to problem (20) can then be implemented online in
a fully decentralized fashion without requiring explicit
communication between PV inverters. We refer the reader
to Section IV for a detailed description of the online
controller implementation.

C. Conic Programming Reformulation

The robust convex program (20) is seemingly intractable
due to the infinite number of linear constraints that must be
enforced. However, given our assumption that the support
Ξ of the system disturbance admits a conic representation,
one can leverage on strong duality of conic linear programs
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to equivalently reformulate the robust convex program
(20) as a finite-dimensional conic program—a classical
technique from robust optimization. Specifically, one can
prove the following result using [32, Thm. 3.2], and the
fact that E[‖V ξ‖22] = E[Tr(V >V ξξ>)] = Tr(V >VM).

Theorem 1. Let QI
∗ be an optimal solution to the

following finite-dimensional conic program:

minimize Tr
(
MV >V

)
subject to QI ∈ S, V ∈ Rn×Nξ ,

Π ∈ R`×m, ν ∈ Rm
+ ,

V = RP +XQ+XQI ,

FQI +G+ νe>1 + Π>W = 0,

Π �K∗ 0.

(21)

It follows that QI∗ is an optimal solution to problem (20).

Several comments are in order. First, the specification
of the conic program (21) relies on the probability dis-
tribution of the disturbance ξ only through its support Ξ
and second-order moment matrix M . Second, this conic
program can be efficiently solved for a variety of cones K,
including polyhedral and second-order cones. In particular,
problem (21) amounts to a quadratic program if K is a
polyhedral cone, and a second-order cone program if K is
a second-order cone.

IV. REAL-TIME CONTROLLER IMPLEMENTATION

The implementation of the controller designed accord-
ing to Theorem 1 relies on the assumption that the statistics
of the system disturbance remain unchanged within the
time interval during which the decentralized controller is
deployed and implemented. This assumption might not
hold in practice. In what follows, we present a method
to the offline design and online implementation of the
decentralized controller, when the statistics of the system
disturbance vary at an (arbitrarily) fast time-scale. In the
offline design, we compute the decentralized controller via
the solution of a robust convex program, which takes into
account the time variation in the statistics of the system
disturbance. In the online implementation, the controller
we design yields reactive power injection profiles that are
guaranteed to robustly satisfy the network voltage and
inverter capacity constraints at the fast time-scale.

A. Real-time System Disturbance Model

We begin by describing the real-time system disturbance
as a discrete-time stochastic process over time periods
indexed by t = 1, 2, . . . . Each discrete time period is
defined over a time interval of length ∆. Accordingly,
we denote by ξ(t) the system disturbance during time
period t, which is modeled as a random vector with known

second-moment and support. Similar to our development
of the uncertainty model in Section II-D, we assume that
the random vector ξ(t) has support Ξ(t) that is convex,
compact, and representable as

Ξ(t) = {ξ(t) ∈ RNξ | e>1 ξ(t) = 1 and W (t)ξ(t) �K 0},

where the matrix W (t) ∈ R`×Nξ is known. The second-
order moment matrix of the random vector ξ(t)

M(t) = E
[
ξ(t)ξ(t)>

]
is assumed to be positive definite and finite-valued.

B. Control Design to Enable Real-time Implementation

The support and second-order moment matrix of the
system disturbance might vary at a fast time-scale of
seconds to minutes. In general, this corresponds to a
time interval that is much shorter than the time interval
during which a decentralized controller is deployed and
implemented. In order to ensure its robust constraint
satisfaction in real-time, the decentralized controller needs
to be designed in anticipation of the non-stationarity in the
statistics of the underlying system disturbance. In what
follows, we formally present the problem of designing a
static robust decentralized controller that is implemented
over multiple discrete time periods. Its optimal solution
can be calculated via the solution of a finite-dimensional
conic program.

More specifically, consider the problem of designing a
decentralized affine controller that is implemented over
discrete time periods t = 1, . . . , T . Our objective is to
minimize the sum of expected voltage regulation error over
the T time periods, while guaranteeing the robust satisfac-
tion of network voltage and inverter capacity constraints.
This amounts to the following robust convex program:

minimize E

[
T∑
t=1

‖V ξ(t)‖22

]
subject to QI ∈ S, V ∈ Rn×Nξ ,

V = RP +XQ+XQI ,

FQIξ +Gξ ≤ 0 ∀ξ ∈
T⋃
t=1

Ξ(t).

(22)

A challenge in the solution of robust program (22) derives
from the potential non-convexity in the uncertainty set⋃T
t=1 Ξ(t). In Theorem 2, we show that problem (22)

admits an equivalent reformulation as a finite-dimensional
conic program. Its proof mirrors on that of Theorem 1,
and is, therefore, omitted due to space constraints.
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Theorem 2. Let QI
∗ be an optimal solution to the

following finite-dimensional conic program:

minimize Tr
(
MV >V

)
subject to QI ∈ S, V ∈ Rn×Nξ

Π(t) ∈ R`×m, ν(t) ∈ Rm
+

V = RP +XQ+XQI

FQI +G+ ν(t)e>1 + Π(t)>W (t) = 0

Π(t) �K∗ 0

t = 1, . . . , T,

(23)

where the matrix M is defined according to

M =

T∑
t=1

M(t).

It follows that QI∗ is an optimal solution to problem (22).

Remark 1 (Communication Requirements). We remark
that the communication required for the implementation
of the decentralized controller QI∗ is low. More precisely,
assuming that the decentralized affine controller QI∗ is
computed at a central computer, four real numbers need
to be transmitted to each PV inverter. This communication
requirement is clearly independent of the time horizon T .

A potential drawback of the optimization problem (23)
is that the number of decision variables grows linearly
with T , in general. Still, one can compute a feasible
solution to problem (22) in time that is independent of
the time horizon T via the construction of a conservative
inner approximation. We provide such a conservative inner
approximation in the following corollary to Theorem 1.

Corollary 1. Consider the set Ξ̂ ⊆ RNξ given by

Ξ̂ =
{
ξ ∈ RNξ

∣∣∣ e>1 ξ = 1 and Ŵ ξ �K 0
}
,

where the matrix Ŵ ∈ Rk×Nξ is known, and Ξ̂ satisfies

Ξ̂ ⊇
T⋃
t=1

Ξ(t). (24)

Let Q
I

be an optimal solution to the following finite-
dimensional conic program:

minimize Tr
(
MV >V

)
subject to QI ∈ S, Π ∈ Rk×m, ν ∈ Rm

+

V = RP +XQ+XQI

FQI +G+ νe>1 + Π>Ŵ = 0

Π �K∗ 0.

(25)

It follows that Q
I

is a feasible solution to problem (22).

In practice, it is always possible to construct the set Ξ̂
such that condition (24) is satisfied. For example, one can
construct the set Ξ̂ based on the power rating of loads
and the capacity constraints of PV inverters. In particular,
such a construction of the set Ξ̂ yields a finite-dimensional
conic program whose dimension is independent of the time
horizon T .

We conclude this section with a discussion on the im-
plementation of decentralized affine controllers computed
according to Corollary 1. First, its implementation yields
control inputs over the discrete time periods t = 1, . . . , T
that are guaranteed to be robustly feasible. Second, as
the solution of problem (25) does not require a priori
knowledge of the realization of system disturbance, it
can be solved offline using only the statistics of the
system disturbance. In particular, this implies that the
decentralized controller does not have to be computed in
real-time.

V. CASE STUDY

We demonstrate the performance of our proposed decen-
tralized affine controller on a three-phase balanced version
of the IEEE 123-node test feeder [33]. Its single-line
diagram is presented in Figure 2. We operate the system
over a time horizon of 24 hours, beginning at 12 AM.

A. System Decription

Fig. 2: Schematic diagram of the IEEE 123-node test
feeder. Each red empty node has installed a PV inverter
with active power capacity 0.8 MW.

A PV inverter that is capable of supplying up to 0.8 MW
of active power is installed at each of the red empty nodes
in Figure 2. In Table I, we specify the parameter values of
the network voltage magnitude and PV inverter capacity
constraints. The tap positions of all voltage regulators are
set to the center. That is, the turns ratio equals 1 for each
voltage regulator. As for the random load processes, we
plot the expected total system load trajectories in Figure 3.
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Fig. 3: The above figure depicts the expected total system
load (active and reactive power) trajectories.

TABLE I: Specification of system data.

Feeder specifications

Base voltage magnitude 4.16 kV
Substation voltage magnitude v0 = 1 (per-unit)
Voltage magnitude constraints v = 0.95 · 1, v = 1.05 · 1 (per-unit)

PV inverter at node i

Apparent power capacity sIi = 1 (MVA)

Max active power supply pIi (t) = max
{
0.8 sin

(
∆πt
720
− π

2

)
, 0
}

Active power supply ξIi (t) ∼ Uni [0, pIi (t)] (MW)

The exact specification of the nodal demand processes is
omitted due to space constraints. Additionally, we assume
that for each discrete time period t, the system disturbance
ξ(t) consists of Nξ random variables that are mutually
uncorrelated.

We assume that the system disturbance stays constant
in every 2-minute interval. Accordingly, each discrete time
period corresponds to a time interval of length ∆ = 2
minutes. The decentralized affine controllers we use are
computed according to Corollary 1. The decentralized
affine controller is updated every 10 minutes by the central
computer.

B. Numerical Results and Discussion

We begin by demonstrating the effectiveness of the pro-
posed decentralized affine controller in regulating voltage.
We do so by comparing the nodal voltage trajectories in
the distribution system with and without control. In Figure
4(a), we plot a particular realization and the empirical
confidence interval of the trajectories of nodal voltage
magnitudes that materialize under the decentralized con-
troller computed according to Corollary 1. In Figure 4(b),
we plot their uncontrolled counterparts. First, note that
in the uncontrolled distribution system, the large amount
of active power supply from PV inverters manifests in
overvoltage in the distribution network. Additionally, the
nodal voltage magnitudes in the uncontrolled distribution
system exhibit large fluctuations as a consequence of the

large fluctuation in the active power supplied from PV
inverters. On the contrary, the nodal voltage magnitudes
in the controlled distribution network are always feasible,
and are regulated close to 1 per-unit throughout the entire
day with high probability.

In Figure 5, we illustrate the behavior of the trajectories
of PV reactive power injections generated by the decen-
tralized controller. First, notice that the reactive power in-
jections from PV inverters exhibit large fluctuations during
the daytime hours. This is a consequence of the large fluc-
tuations in the active power supplied from PV inverters.
In particular, an increase in active power supplied from
PV inverters increases the voltage magnitudes across the
network. In order to suppress the rise and fall in voltage,
the decentralized affine controller generates reactive power
injections from PV inverters that are negatively correlated
with their active power supply. More interestingly, there is
a dip in the maximum reactive power consumption from
PV inverters during the middle of the day. Note that the
active power supply from PV inverters is at peak during
the middle of the day. This serves to limit the reactive
power capacity available to the PV inverter during those
times. As a result, the reactive power capacity constraint
(11) is binding during the middle of the day, which leads
to the dip in the maximum reactive power being absorbed
by the PV inverters.

VI. CONCLUSION

In this paper, we consider the decentralized reactive
power control of photovoltaic (PV) inverters to regulate
distribution system voltage profile subject to voltage mag-
nitude and PV inverter capacity constraints. Our approach
involves the offline design and the online implementation
of the decentralized controller. In the offline control de-
sign, we devise a method to compute a decentralized affine
controller through the solution of a finite-dimensional
conic program. In the online implementation, the resulting
affine controller can be implemented over a fast time-
scale, and yields nodal voltage and PV reactive power
injection trajectories that are guaranteed to be feasible for
all realizations of the system disturbance. We demonstrate
the ability of our control design technique to regulate
voltage profile effectively with a study of the IEEE 123-
node test feeder.

There are several interesting directions for future work.
For example, a practical drawback of our approach is
its explicit reliance on the assumption of constant power
loads. Such a load model does not capture the class of
voltage-dependent loads, e.g., heating and lighting loads,
induction motors, and shunt capacitors. In the future, it
would be of interest to extend the formulation in this
paper to accommodate a mixture of constant power and
voltage-dependent loads. Additionally, all of our results
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(a) Nodal voltage magnitudes in a controlled distribution system.
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(b) Nodal voltage magnitudes in an uncontrolled distribution system.

Fig. 4: The figures in the first and third rows depict a particular realization of nodal voltage magnitude trajectories
in (a) a controlled distribution system operated under the decentralized affine controller, and (b) an uncontrolled
distribution system. The figures in the second and fourth rows depict the empirical confidence intervals associated with
these trajectories. The empirical confidence intervals are estimated using 500 independent realizations of the system
disturbance. The black dashed lines specify voltage magnitudes limits.
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Fig. 5: The figures in the first row depict a particular realization of the PV reactive power injection trajectories at node
7, 250, and 110, respectively. The figures in the second row depict the empirical confidence intervals associated with
these trajectories. They are estimated using 500 independent realizations of the system disturbance.
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rely on the assumption that the distribution system is three-
phase balanced. Such an assumption is unlikely to hold in
practice. It would be of interest to extend our techniques
to accommodate unbalanced distribution systems.

REFERENCES

[1] California ISO, “Daily renewables watch for 05/13/2017,”
available at: http://content.caiso.com/green/renewrpt/20170513
DailyRenewablesWatch.pdf.

[2] M. Thomson and D. Infield, “Impact of widespread photovoltaics
generation on distribution systems,” IET Renewable Power Gener-
ation, vol. 1, no. 1, pp. 33–40, 2007.

[3] V. Disfani, P. Ubiratan, and J. Kleissl, “Model predictive on-load
tap changer control for high penetrations of PV using sky imager
solar forecast,” California Solar Initiative RD&D Program, 2015.

[4] S. Corsi, Voltage control and protection in electrical power systems:
from system components to wide-area control. Springer, 2015.

[5] M. Farivar, R. Neal, C. Clarke, and S. Low, “Optimal inverter VAR
control in distribution systems with high PV penetration,” in Power
and Energy Society General Meeting, 2012 IEEE. IEEE, 2012,
pp. 1–7.

[6] E. Dall’Anese, G. B. Giannakis, and B. F. Wollenberg, “Optimiza-
tion of unbalanced power distribution networks via semidefinite
relaxation,” in North American Power Symposium (NAPS), 2012.
IEEE, 2012, pp. 1–6.

[7] Z. Shen and M. E. Baran, “Gradient based centralized optimal
Volt/Var control strategy for smart distribution system,” in Inno-
vative Smart Grid Technologies (ISGT), 2013 IEEE PES. IEEE,
2013, pp. 1–6.

[8] E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, “Optimal dis-
patch of photovoltaic inverters in residential distribution systems,”
IEEE Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487–
497, 2014.

[9] K. Turitsyn, S. Backhaus, M. Chertkov et al., “Options for control
of reactive power by distributed photovoltaic generators,” Proceed-
ings of the IEEE, vol. 99, no. 6, pp. 1063–1073, 2011.

[10] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, “Voltage
regulation algorithms for multiphase power distribution grids,”
IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3913–
3923, 2016.

[11] N. Li, G. Qu, and M. Dahleh, “Real-time decentralized voltage
control in distribution networks,” in Communication, Control, and
Computing (Allerton), 2014 52nd Annual Allerton Conference on.
IEEE, 2014, pp. 582–588.

[12] P. D. Ferreira, P. Carvalho, L. A. Ferreira, and M. D. Ilic,
“Distributed energy resources integration challenges in low-voltage
networks: Voltage control limitations and risk of cascading,” Sus-
tainable Energy, IEEE Transactions on, vol. 4, no. 1, pp. 82–88,
2013.

[13] H. Zhu and H. J. Liu, “Fast local voltage control under limited re-
active power: Optimality and stability analysis,” IEEE Transactions
on Power Systems, vol. 31, no. 5, pp. 3794–3803, 2016.

[14] P. Jahangiri and D. C. Aliprantis, “Distributed Volt/Var control by
PV inverters,” IEEE Transactions on power systems, vol. 28, no. 3,
pp. 3429–3439, 2013.

[15] H.-G. Yeh, D. F. Gayme, and S. H. Low, “Adaptive VAR control
for distribution circuits with photovoltaic generators,” IEEE Trans-
actions on Power Systems, vol. 27, no. 3, pp. 1656–1663, 2012.

[16] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics
of local voltage control in distribution systems,” in Decision and
Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE,
2013, pp. 4329–4334.

[17] B. Zhang, A. Lam, A. D. Domı́nguez-Garcı́a, and D. Tse, “An
optimal and distributed method for voltage regulation in power dis-
tribution systems,” Power Systems, IEEE Transactions on, vol. 30,
no. 4, pp. 1714–1726, 2015.

[18] H. J. Liu, W. Shi, and H. Zhu, “Distributed voltage control in
distribution networks: Online and robust implementations,” IEEE
Transactions on Smart Grid, 2017.

[19] S. S. Guggilam, E. DallAnese, Y. C. Chen, S. V. Dhople, and
G. B. Giannakis, “Scalable optimization methods for distribution
networks with high PV integration,” IEEE Transactions on Smart
Grid, vol. 7, no. 4, pp. 2061–2070, 2016.

[20] D. B. Arnold, M. Negrete-Pincetic, M. D. Sankur, D. M. Auslander,
and D. S. Callaway, “Model-free optimal control of VAR resources
in distribution systems: an extremum seeking approach,” IEEE
Transactions on Power Systems, vol. 31, no. 5, pp. 3583–3593,
2016.

[21] B. Robbins, C. N. Hadjicostis, A. D. Domı́nguez-Garcı́a et al., “A
two-stage distributed architecture for voltage control in power dis-
tribution systems,” Power Systems, IEEE Transactions on, vol. 28,
no. 2, pp. 1470–1482, 2013.

[22] S. Bolognani and S. Zampieri, “A distributed control strategy
for reactive power compensation in smart microgrids,” Automatic
Control, IEEE Transactions on, vol. 58, no. 11, pp. 2818–2833,
2013.

[23] S. Bolognani, R. Carli, G. Cavraro, and S. Zampieri, “Distributed
reactive power feedback control for voltage regulation and loss
minimization,” IEEE Transactions on Automatic Control, vol. 60,
no. 4, pp. 966–981, 2015.

[24] V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, “Stochas-
tic reactive power management in microgrids with renewables,”
Power Systems, IEEE Transactions on, vol. 30, no. 6, pp. 3386–
3395, 2015.

[25] R. A. Jabr, “Linear decision rules for control of reactive power by
distributed photovoltaic generators,” IEEE Transactions on Power
Systems, 2017.

[26] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems,” Power Delivery, IEEE Transactions on, vol. 4,
no. 1, pp. 725–734, 1989.

[27] ——, “Optimal sizing of capacitors placed on a radial distribution
system,” Power Delivery, IEEE Transactions on, vol. 4, no. 1, pp.
735–743, 1989.

[28] ——, “Network reconfiguration in distribution systems for loss
reduction and load balancing,” Power Delivery, IEEE Transactions
on, vol. 4, no. 2, pp. 1401–1407, 1989.

[29] International Electrotechnical Commission et al., Efficient Electri-
cal Energy Transmission and Distribution. IEC, 2007.

[30] W. Lin and E. Bitar, “Performance bounds for robust decentralized
control,” in 2016 American Control Conference (ACC). IEEE,
2016, pp. 4323–4330.

[31] Y.-C. Ho, “Team decision theory and information structures,”
Proceedings of the IEEE, vol. 68, no. 6, pp. 644–654, 1980.

[32] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski,
“Adjustable robust solutions of uncertain linear programs,” Mathe-
matical Programming, vol. 99, no. 2, pp. 351–376, 2004.

[33] Distribution Test Feeder Working Group, “Distribution test feed-
ers,” available at: https://ewh.ieee.org/soc/pes/dsacom/testfeeders/.

APPENDIX A
MATRIX DEFINITIONS

The matrices F and G used in Eq. (19) are specified
according to

F =


X

−X
In
−In

 ,

G =


v201− v2 0

v2 − v201 0

−sI A⊗
[
0 0 1

]
−sI A⊗

[
0 0 1

]
+


RP +XQ

−(RP +XQ)

0

0

 .
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