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Abstract: We adopt the perspective of an aggregator, which seeks to coordinate its purchase
of demand reductions from a fixed group of residential electricity customers, with its sale of
the aggregate demand reduction in a two-settlement wholesale energy market. The aggregator
procures reductions in demand by offering its customers a uniform price for reductions in
consumption relative to their predetermined baselines. Prior to its realization of the aggregate
demand reduction, the aggregator must also determine how much energy to sell into the two-
settlement energy market. In the day-ahead market, the aggregator commits to a forward
contract, which calls for the delivery of energy in the real-time market. The underlying aggregate
demand curve, which relates the aggregate demand reduction to the aggregator’s offered price,
is assumed to be affine and subject to unobservable, random shocks. Assuming that both
the parameters of the demand curve and the distribution of the random shocks are initially
unknown to the aggregator, we investigate the extent to which the aggregator might dynamically
adapt its DR prices and forward contracts to maximize its expected profit over a window of
T days. Specifically, we design a data-driven pricing and contract offering policy that resolves
the aggregator’s need to learn the unknown demand model with its desire to maximize its
cumulative expected profit over time. The proposed pricing policy is proven to exhibit a regret
over T days that is at most O(

√
T ).
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1. INTRODUCTION

The large scale utilization of demand response (DR) re-
sources has the potential to substantially improve the
reliability and efficiency of electric power systems. Ac-
cordingly, several state and federal mandates have been
established to facilitate the integration of demand response
resources into wholesale electricity markets. For example,
FERC Order 719 mandates that Independent System Op-
erators (ISOs) permit the direct sale of DR services into
wholesale electricity markets (FERC, 2008). As individual
residential customers often posses insufficient capacity 1

to participate in such markets directly, there emerges the
need for an intermediary, or aggregator, with the ability
to coordinate the demand response of large numbers of
residential customers for direct sale into the wholesale
electricity market.

In this paper, we adopt the perspective of an aggregator,
which seeks to coordinate its purchase of an aggregate de-
mand reduction from a fixed group of residential electricity
customers, with its sale of the aggregate demand reduction

� This work was supported in part by NSF grant ECCS-1351621,
NSF grant CNS-1239178, NSF grant IIP- 1632124, US DoE under
the CERTS initiative, and the Simons Institute for the Theory of
Computing.
1 For example, the Proxy Demand Resource (PDR) program cur-
rently being operated by the California ISO has a minimum curtail-
ment capacity requirement of 100 kW (Wolak et al., 2009).

into a two-settlement wholesale energy market. 2 Formally,
this amounts to a two-sided optimization problem, which
requires the aggregator to balance the cost it incurs in
procuring the demand reduction from customers against
the revenue it derives from its sale into the wholesale
energy market. We develop the problem more formally in
what follows.

We consider the setting in which the aggregator pur-
chases demand reductions from customers using a non-
discriminatory, price-based mechanism. That is to say,
each participating customer is payed for her reduction in
electricity demand according to a uniform per-unit energy
price determined by the aggregator. Pricing mechanisms
of this form fall within the more general category of
DR programs that rely on peak time rebates (PTR) as
incentives for demand reduction. Prior to its realization
of the aggregate demand reduction, the aggregator must
also determine how much energy to sell into the two-
settlement energy market. In the day-ahead (DA) market,
the aggregator commits to a forward contract, which calls
for delivery of energy in the real-time (RT) market. If the
realized reduction in demand exceeds (falls short of) the
forward contract, then the difference is sold (bought) in the
RT market. In order to maximize its profit, the aggregator
must, therefore, co-optimize the DR price it offers its
customers with the forward contract that it commits to
in the wholesale energy market.

2 We note that a measurable reduction in demand is equivalent to
an increase in supply.
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There are a myriad of challenges that the aggregator
faces in the deployment of such programs. The most basic
challenge is the prediction of how customers will adjust
their aggregate demand in response to different DR prices,
i.e., the aggregate demand curve. If the offered price is too
low, consumers may be unwilling to curtail their demand;
if the offered price is too high, the aggregator pays too
much and gets more reduction than is needed. As the
aggregator is initially ignorant to customers’ aggregate
demand curve, the aggregator must attempt to learn a
model of customer behavior over time through repeated
observations of demand reductions in response to its
offered DR prices. Simultaneously, the aggregator must
jointly adjust its DR prices and forward contract offerings
in such a manner as to facilitate profit maximization over
time. As we will later show, such tasks are intimately
related, and give rise to a trade-off between the need to
learn (explore) and earn (exploit).

Contribution and Related Work: We study the setting in
which the aggregator is faced with an aggregate demand
curve that is affine in price, and subject to unobservable,
additive random shocks. We assume that both the param-
eters of the demand curve and the probability distribution
of the random shocks are fixed, and initially unknown to
the aggregator. Faced with such ignorance, we explore the
extent to which the aggregator might dynamically adapt
its posted DR prices and offered contracts to maximize its
expected profit over a time frame of T days. Specifically,
we design a causal pricing and contract offering policy
that resolves the aggregator’s need to learn the unknown
demand model with its desire to maximize its cumulative
expected profit over time. The proposed pricing policy is
proven to exhibit regret (relative to an oracle) over T days

that is at most O(
√
T ). In addition, the proposed policy

generates a sequence of posted DR prices and forward
contracts that converge to the oracle optimal DR price
and forward contract in the mean square sense.

The literature – as it relates to the problem of co-
optimizing an aggregator’s decisions in both the retail
and wholesale electricity markets – is sparse. Campaigne
and Oren (2015) consider a market model that is perhaps
closest in nature to the one considered in this paper. They
adopt a mechanism design approach to eliciting demand
response, where customers are rationed and remunerated
according to their reported types. A related line of liter-
ature includes (Chao, 2012) and (Crampes and Léautier,
2015). In this paper, we take a posted price approach to the
procurement of demand response. This is in sharp contrast
to the mechanism design approach, as it gives rise to the
need to learn customers’ types (i.e., demand function) over
time.

Organization: The remainder of the paper is organized
as follows. In Section 2, we formulate the aggregator’s
profit maximization problem. In Section 3, we propose a
recursive estimation scheme to learn the unknown demand
model. In Section 4, we propose a joint pricing and
contract offering policy for the aggregator, and provide
a theoretical analysis of the regret incurred by the policy.
In Section 5, we illustrate the performance of our proposed
policy with a numerical example. All mathematical proofs

are omitted in this version of the paper due to space
constraints.

2. MODEL

We adopt the perspective of an aggregator who seeks to
purchase demand reductions from a fixed group of N
customers for sale into a two-settlement energy market.
The market is assumed to repeat over multiple time
periods (e.g., days) indexed by t = 1, 2, . . .. The actions
taken by the aggregator and their timing are specified in
the following subsections.

2.1 Two-Settlement Market Model

At the beginning of each time period t, the aggregator
commits to a forward contract for energy in the day-ahead
(DA) market in the amount of Qt (kWh). The forward
contract is remunerated at the DA energy price. The
forward contract calls for delivery in the real-time (RT)
market. If the energy delivered by the aggregator (i.e.,
demand reduction) falls short of the forward contract, the
aggregator must purchase the shortfall in the RT market
at the shortage price. If the energy delivered exceeds
the forward contract, the aggregator must sell the excess
supply in the RT market at the overage price. We denote
the wholesale energy prices ($/kWh) by

• π, DA energy price,
• π−, RT shortage price,
• π+, RT overage price.

Although we assume throughout the paper that the whole-
sale energy prices are fixed and known across time, all
results stated in this paper can be generalized to accom-
modate the more general setting in which the wholesale
energy prices exhibit known variation with time. We also
assume that the wholesale energy prices satisfy π > 0 and
π+ < π < π−. Such assumption serves to facilitate clarity
of exposition and analysis in the sequel, as it preserves
concavity of the aggregator’s expected profit function (2).

2.2 Demand Response Model

In order to meet its forward contract commitment Qt, the
aggregator must elicit an aggregate reduction in demand
from its customers. It does so by broadcasting a uniform
DR price pt ≥ 0, to which each customer i responds
with a reduction in demand in the amount of Dit (kWh),
thereby entitling each customer i to receive a payment
of ptDit. Implicit in this model is the assumption that
each customer’s reduction in demand is measured against
a predetermined baseline.

We model the response of each customer i to the posted
price pt at time t according to the affine function

Dit = aipt + bi + εit, for i = 1, . . . , N,

where ai ∈ R and bi ∈ R are the demand model
parameters, and εit is an unobservable demand shock,
which we model as a zero-mean random variable. We
assume that both the model parameters ai and bi, and
the distribution function of the demand shock are initially
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unknown to the aggregator. Clearly, the aggregate demand

reduction Dt :=
∑N

i=1 Dit satisfies the affine relationship

Dt = apt + b+ εt, (1)

where the aggregate model parameters and shock are

defined as a :=
∑N

i=1 ai, b :=
∑N

i=1 bi, and εt :=
∑N

i=1 εit,
respectively. We denote by θ := (a, b) the demand model
parameter.

We assume throughout the paper that a ∈ [a, a] and
b ∈

[
0, b

]
where a, a, and b are known and satisfy 0 < a ≤

a < ∞ and 0 ≤ b < ∞. Such assumptions are natural,
as they ensure a bounded and positive price elasticity
of aggregate demand, and that reductions in aggregate
demand are guaranteed to be nonnegative in the absence
of demand shocks. We also assume that the sequence
of aggregate demand shocks {εt} are independent and
identically distributed (IID) random variables, in addition
to the following technical assumption.

Assumption 1. The aggregate demand shock εt takes val-
ues in the interval [ε, ε]. Moreover, its cumulative distri-
bution function F is bi-Lipschitz over this range. Namely,
there exists a real constant L ≥ 1, such that for all
x, y ∈ [ε, ε], it holds that

1

L
|x− y| ≤ |F (x)− F (y)| ≤ L |x− y| .

The assumption that the aggregate demand shock takes
bounded values is natural, given the physical limitation
on the range of values that demand can take. We also note
that the aggregator does not require explicit knowledge of
the parameters specified in Assumption 1.

2.3 Aggregator Profit

The expected profit derived by the aggregator during
period t under a fixed price pt and forward contract Qt

is given by

r(pt,Qt) (2)

:= πQt + E
[
π+[Dt −Qt]

+ − π−[Qt −Dt]
+ − ptDt

]
,

where the expectation is taken with respect to the distri-
bution on the random shock εt, and [x]+ := max{0, x} for
all x ∈ R. It is not difficult to show that the expected profit
criterion (2) is concave in its arguments (pt, Qt) given the
assumptions stated in this paper thus far.

We define the oracle optimal price and contract as

(p∗, Q∗) := argmax{r(p,Q) : (p,Q) ∈ R2}.
That is to say, (p∗, Q∗) denote the DR price and forward
contract, which jointly maximize the aggregator’s expected
profit given perfect knowledge of the demand model. Note
that oracle optimal price and contract are time-invariant,
as the wholesale energy prices and demand model are time
invariant. Their closed-form expressions are given in the
following lemma.

Lemma 1. (Oracle Optimal Policy). The oracle optimal
price p∗ and contract Q∗ are given by

p∗ =
1

2

(
π − b

a

)
, (3)

Q∗ = ap∗ + b+ F−1(α), (4)

where α := (π − π+)/(π− − π+).

Here, F−1(α) := inf{x ∈ R : F (x) ≥ α} denotes the α-
quantile of the random shock εt. We are guaranteed that
α ∈ [0, 1], because of the assumption that π+ < π < π−.

We define the oracle optimal profit accumulated over T
time periods as

R∗(T ) :=

T∑
t=1

r(p∗, Q∗).

We employ the term oracle, as R∗(T ) equals the maximum
expected profit that an aggregator might derive over T
times periods if it had perfect knowledge of the demand
model.

2.4 Policy Design and Regret

We consider the scenario in which the aggregator knows
neither the demand model parameter θ = (a, b) nor the
aggregate shock distribution F at the outset. Accordingly,
the aggregator must endeavor to learn these features from
the data it collects over time, e.g., measurements of ag-
gregate demand reductions in response to its posted DR
prices. At the same time, the aggregator must dynami-
cally adapt its sequence of posted DR prices (and forward
contract offerings) to improve its profit over time. In what
immediately follows, we describe the space of feasible poli-
cies that the aggregator might use to guide its adaptation
of DR prices {pt} and contracts {Qt} over time.

Prior to its determination of the price pt and the contract
Qt at time t, the aggregator has access to the entire
history of prices, contract offerings, and aggregate demand
reductions, up to and including time period t − 1. We
define a feasible policy as an infinite sequence of functions
γ := ((p1, Q1), (p2, Q2), . . .), where each function in the
sequence is allowed to depend only on the past data
available until that point in time. More formally, we
require that the functions (pt, Qt) be measurable according
to the σ-algebra generated by the history of prices, offered
contracts, and demand observations, i.e.,

(p1, . . . , pt−1, Q1, . . . , Qt−1, D1, . . . , Dt−1)

for all time periods t ≥ 2. For t = 1, we require that
(p1, Q1) be a pair of deterministic constants.

The expected profit generated by a feasible policy γ over
T time periods is defined as

Rγ(T ) := Eγ

[
T∑

t=1

r(pt, Qt)

]
, (5)

where the expectation is taken with respect to the demand
model (1) under the policy γ. We measure the performance
of a feasible policy γ over T time periods according to the
T -period regret :

∆γ(T ) := R∗(T )−Rγ(T ).

The T -period regret incurred by a feasible policy equals
the difference between the oracle optimal profit and the ex-
pected profit incurred by that policy over T time periods.
Clearly, policies that produce low regret are preferred, as
the oracle optimal profit is an upper bound on the expected
profit achievable by any feasible policy. Accordingly, we
seek the design of policies whose T -period regret grows
sublinearly with the horizon T . Such policies are said to
have no-regret, as their average regret (1/T ) · ∆γ(T ) is
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guaranteed to vanish asymptotically. More formally, we
have the following definition.

Definition 1. (No-Regret Policy). A feasible policy γ is
said to have no-regret if limT→∞ ∆γ(T )/T = 0.

The following result establishes an upper bound on the
T -period regret in terms of squared pricing and contract
errors relative to their oracle optimal counterparts. Lemma
2 will prove useful to the derivation of our main results.

Lemma 2. The T -period regret incurred by any feasible
policy γ is upper bounded by

∆γ(T ) ≤ a

T∑
t=1

Eγ
[
(pt − p∗)2

]

+ L(π− − π+)

T∑
t=1

Eγ
[
(Qt −Q∗ − a(pt − p∗))

2
]
, (6)

where (p∗, Q∗) denote the oracle optimal price and con-
tract.

Lemma 2 reveals that convergence of the posted prices {pt}
and offered contracts {Qt} to the oracle optimal price p∗

and contract Q∗ in the mean square sense, respectively,
will prove essential to the design of policies that exhibit
no-regret. In the following section, we introduce a simple
(least-squares) method to learning the demand model that
will facilitate the design of such policies.

3. DEMAND MODEL LEARNING

In this section, we propose a simple approach to learning
the demand model from data using the method of least
squares estimation.

3.1 Parameter Estimation

We define the least squares estimator (LSE) of the pa-
rameter θ, given the history of past prices and demand
observations at time period t as

θt := argmin

{
t−1∑
k=1

(Dk − (ϑ1pk + ϑ2))
2
: (ϑ1, ϑ2) ∈ R2

}
,

for time periods t = 2, 3, . . .. It is straightforward to show
that

θt = J −1
t−1

(
t−1∑
k=1

[
pk
1

]
Dk

)
, (7)

assuming that the indicated inverse exists. The matrix Jt

is defined as

Jt :=

t∑
k=1

[
pk
1

] [
pk
1

]�
.

Its inverse is given by

J −1
t = J−1

t

(
1

t

t∑
k=1

[
−1
pk

] [
−1
pk

]�)
, (8)

where Jt :=
∑t

k=1(pk− p̄t)
2, and p̄t := (1/t)

∑t
k=1 pk. The

parameter estimation error that results under the LSE (7)
can be expressed as

θt − θ = J −1
t−1

(
t−1∑
k=1

[
pk
1

]
εk

)
. (9)

Remark 1. (The Role of Price Exploration) The expres-
sion for the parameter estimation error in (9) implies
a sufficient condition on the sequence of prices, which
guarantees consistency of the LSE. Namely, the parameter
estimation error converges to zero in probability if the
sequence of prices are such that Jt grows unbounded with
time, almost surely. Consequently, a policy that guarantees
sufficient price exploration, i.e., persistent variation in the
sequence of prices, results in consistency of the parameter
estimates. In Section 4, we propose a policy that generates
enough variation in the sequence of prices such that Jt is
guaranteed to be at least O(

√
t).

Recalling our previous assumption that the unknown pa-
rameter θ belongs to a closed and compact set given by
Θ := [a, a] × [0, b], one can improve upon the LSE (7) by
projecting θt onto the set Θ. More precisely, define the
truncated least squares estimator as

θ̂t := argmin {‖ϑ− θt‖2 : ϑ ∈ Θ} . (10)

It clearly holds that ‖θ̂t − θ‖ ≤ ‖θt − θ‖.

3.2 Quantile Estimation

We propose an approach to the recursive estimation of the
unknown quantile function using the residuals generated
by the truncated LSE (10). At each time period t, define

the sequence of residuals associated with the estimator θ̂t
as

ε̂k,t := Dk − (âtpk + b̂t), for k = 1, . . . , t. (11)

Define their empirical distribution as

F̂t(x) :=
1

t

t∑
k=1

1{ε̂k,t ≤ x},

and their corresponding empirical quantile function as

F̂−1
t (α) := inf{x ∈ R : F̂t(x) ≥ α}. It will prove useful to

the subsequent analyses to express the empirical quantile
function in terms of the order statistics associated with the
sequence of residuals. The order statistics associated with
the sequence ε̂1,t, . . . , ε̂t,t are defined as a permutation of
the sequence denoted by ε̂(1),t, . . . , ε̂(t),t, where

ε̂(1),t ≤ ε̂(2),t ≤ . . . ≤ ε̂(t),t.

With the order statistics of the residuals in hand, one can
express the empirical quantile function as

F̂−1
t (α) = ε̂(i),t, (12)

where i is the unique index such that i− 1 < tα ≤ i, i.e.,
i = �tα�. Using Equation (12), the quantile estimation
error can be linked to the parameter estimation error via
the following inequality,

|F̂−1
t (α)− F−1(α)|

≤ |F−1
t (α)− F−1(α)|+

(
1 + |p(i)|

)
‖θ̂t − θ‖1, (13)

where F−1
t (α) is defined as the empirical quantile function

associated with the sequence of demand shocks ε1, . . . , εt.

It follows from the inequality in (13) that consistency
of the quantile estimator (12) depends on consistency

of both the parameter estimator θ̂t and the empirical
quantile function F−1

t (α). We establish consistency of the
parameter estimator under our proposed policy in Lemma
3. Clearly, consistency of the empirical quantile function
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guaranteed to vanish asymptotically. More formally, we
have the following definition.

Definition 1. (No-Regret Policy). A feasible policy γ is
said to have no-regret if limT→∞ ∆γ(T )/T = 0.

The following result establishes an upper bound on the
T -period regret in terms of squared pricing and contract
errors relative to their oracle optimal counterparts. Lemma
2 will prove useful to the derivation of our main results.

Lemma 2. The T -period regret incurred by any feasible
policy γ is upper bounded by

∆γ(T ) ≤ a

T∑
t=1

Eγ
[
(pt − p∗)2

]

+ L(π− − π+)

T∑
t=1

Eγ
[
(Qt −Q∗ − a(pt − p∗))

2
]
, (6)

where (p∗, Q∗) denote the oracle optimal price and con-
tract.

Lemma 2 reveals that convergence of the posted prices {pt}
and offered contracts {Qt} to the oracle optimal price p∗

and contract Q∗ in the mean square sense, respectively,
will prove essential to the design of policies that exhibit
no-regret. In the following section, we introduce a simple
(least-squares) method to learning the demand model that
will facilitate the design of such policies.

3. DEMAND MODEL LEARNING

In this section, we propose a simple approach to learning
the demand model from data using the method of least
squares estimation.

3.1 Parameter Estimation

We define the least squares estimator (LSE) of the pa-
rameter θ, given the history of past prices and demand
observations at time period t as

θt := argmin

{
t−1∑
k=1

(Dk − (ϑ1pk + ϑ2))
2
: (ϑ1, ϑ2) ∈ R2

}
,

for time periods t = 2, 3, . . .. It is straightforward to show
that

θt = J −1
t−1

(
t−1∑
k=1

[
pk
1

]
Dk

)
, (7)

assuming that the indicated inverse exists. The matrix Jt

is defined as

Jt :=

t∑
k=1

[
pk
1

] [
pk
1

]�
.

Its inverse is given by

J −1
t = J−1

t

(
1

t

t∑
k=1

[
−1
pk

] [
−1
pk

]�)
, (8)

where Jt :=
∑t

k=1(pk− p̄t)
2, and p̄t := (1/t)

∑t
k=1 pk. The

parameter estimation error that results under the LSE (7)
can be expressed as

θt − θ = J −1
t−1

(
t−1∑
k=1

[
pk
1

]
εk

)
. (9)

Remark 1. (The Role of Price Exploration) The expres-
sion for the parameter estimation error in (9) implies
a sufficient condition on the sequence of prices, which
guarantees consistency of the LSE. Namely, the parameter
estimation error converges to zero in probability if the
sequence of prices are such that Jt grows unbounded with
time, almost surely. Consequently, a policy that guarantees
sufficient price exploration, i.e., persistent variation in the
sequence of prices, results in consistency of the parameter
estimates. In Section 4, we propose a policy that generates
enough variation in the sequence of prices such that Jt is
guaranteed to be at least O(

√
t).

Recalling our previous assumption that the unknown pa-
rameter θ belongs to a closed and compact set given by
Θ := [a, a] × [0, b], one can improve upon the LSE (7) by
projecting θt onto the set Θ. More precisely, define the
truncated least squares estimator as

θ̂t := argmin {‖ϑ− θt‖2 : ϑ ∈ Θ} . (10)

It clearly holds that ‖θ̂t − θ‖ ≤ ‖θt − θ‖.

3.2 Quantile Estimation

We propose an approach to the recursive estimation of the
unknown quantile function using the residuals generated
by the truncated LSE (10). At each time period t, define

the sequence of residuals associated with the estimator θ̂t
as

ε̂k,t := Dk − (âtpk + b̂t), for k = 1, . . . , t. (11)

Define their empirical distribution as

F̂t(x) :=
1

t

t∑
k=1

1{ε̂k,t ≤ x},

and their corresponding empirical quantile function as

F̂−1
t (α) := inf{x ∈ R : F̂t(x) ≥ α}. It will prove useful to

the subsequent analyses to express the empirical quantile
function in terms of the order statistics associated with the
sequence of residuals. The order statistics associated with
the sequence ε̂1,t, . . . , ε̂t,t are defined as a permutation of
the sequence denoted by ε̂(1),t, . . . , ε̂(t),t, where

ε̂(1),t ≤ ε̂(2),t ≤ . . . ≤ ε̂(t),t.

With the order statistics of the residuals in hand, one can
express the empirical quantile function as

F̂−1
t (α) = ε̂(i),t, (12)

where i is the unique index such that i− 1 < tα ≤ i, i.e.,
i = �tα�. Using Equation (12), the quantile estimation
error can be linked to the parameter estimation error via
the following inequality,

|F̂−1
t (α)− F−1(α)|

≤ |F−1
t (α)− F−1(α)|+

(
1 + |p(i)|

)
‖θ̂t − θ‖1, (13)

where F−1
t (α) is defined as the empirical quantile function

associated with the sequence of demand shocks ε1, . . . , εt.

It follows from the inequality in (13) that consistency
of the quantile estimator (12) depends on consistency

of both the parameter estimator θ̂t and the empirical
quantile function F−1

t (α). We establish consistency of the
parameter estimator under our proposed policy in Lemma
3. Clearly, consistency of the empirical quantile function
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F−1
t (α) does not depend on the particular policy being

used. In Proposition 1, we establish a bound on the rate
at which the sequence {F−1

t (α)} converges to F−1(α) in
probability.

Proposition 1. There exists a finite positive constant µ1

such that

P{|F−1
t (α)− F−1(α)| > ε} ≤ 2 exp(−µ1ε

2t) (14)

for all ε > 0 and t ≥ 2.

4. BUYING AND SELLING WITH NO-REGRET

In this section, we build on the approach to demand model
learning outlined in Section 3 to construct a pricing and
contract offering policy, which is guaranteed to exhibit no-
regret.

4.1 Myopic Policy

We first introduce a natural approach to pricing and
contract offering, which combines the model estimation
scheme outlined in Section 3 with a myopic approach
to pricing and contract offering. That is to say, at each
time period t, the aggregator estimates the demand model
parameters and quantile function according to (10) and
(12), respectively, and sets the price and forward contract
according to

p̂t =
1

2

(
π − b̂t

ât

)
, (15)

Q̂t = âtp̂t + b̂t + F̂−1
t (α). (16)

Under this myopic policy, the aggregator treats its demand
model estimates in each period as if they were correct,
and ignores the impact of its choice of price on its ability
to accurately estimate the demand model in future time
periods. As discussed in Remark 1, consistency of the
parameter estimator is reliant upon sufficient variation
in the underlying sequence of prices. However, under
the myopic policy the sequence of prices may converge
prematurely to a fixed price (that is different from the
oracle optimal price). As a consequence, the sequence of
parameter estimates may also converge to values different
from the true model parameter. This phenomenon, also
known as incomplete learning, is well-documented in the
revenue management literature – see, for example, (Lai
and Robbins, 1982; Keskin and Zeevi, 2014). In Section 5,
we conduct a numerical case study that appears to indicate
the occurrence of incomplete learning under the myopic
policy – see, for example, Figures 1(h) and 1(i).

4.2 Perturbed Myopic Policy

To guarantee sufficient price exploration, we propose a
policy that is similar in structure to a policy first intro-
duced in (Khezeli and Bitar, 2016a,b). We refer to this
policy as the perturbed myopic policy. The policy forces
price exploration by adding a perturbation (of appropriate
magnitude) to the myopic price at every other time step.
More precisely, we define the perturbed myopic policy as

pt =

{
p̂t, t odd,

p̂t−1 + ρt−1/4, t even,
(17)

Qt = âtpt + b̂t + F̂−1
t (α), (18)

where ρ ≥ 0 is a user specified constant that we allow to
be arbitrary in this paper. 3 There exists a natural trade-
off in setting the price perturbation. On the one hand, the
perturbations should decay at a rate that is slow enough
to generate sufficient price exploration required to ensure
consistent parameter estimation. On the other hand, the
perturbations should decay at a rate that is fast enough
to guarantee a sublinear growth rate of regret. In fact,
it can be shown that among all polynomial functions of
t, the optimal choice of the price perturbation (up to a
multiplicative constant), which minimizes the asymptotic
order of our upper bound on regret is given by t−1/4.

Recall the upper bound on the T -period regret established
in Lemma 2. Upon examination of the inequality in (6),
it becomes apparent that it suffices to bound the rate at
which the squared pricing and contract errors accumulate
under the perturbed myopic policy, in order to upper
bound the rate at which regret accumulates. We do so
by first relating the pricing and contract errors to the
parameter estimation error. We then derive a bound on
the rate at which the parameter estimation error converges
to zero in probability under the perturbed myopic policy.

By combining Equations (15) and (3), we can upper bound
the pricing error by

|p̂t − p∗| ≤ k1‖θ̂t − θ‖1, (19)

where k1 := (a+ b)/(2aa). Similarly, by combining Equa-
tions (16) and (4) with the inequality in (13), we can upper
bound the contract error by

|Q̂t −Q∗| ≤ k2‖θ̂t − θ‖1 + |F−1
t (α)− F−1(α)|, (20)

where k2 := (2p+ π + 3)/2 and p := ρ+ (π − b/a)/2.

Proposition 1 establishes a bound on the rate at which
the last term in (20) converges to zero in probability.
The following Lemma establishes a bound on the rate at

which the sequence of parameter estimates {θ̂t} (generated
under the perturbed myopic policy) converges to the true
parameter θ in probability.

Lemma 3. (Consistent Parameter Estimation). There ex-
ist finite positive constants µ2 and µ3 such that, under the
perturbed myopic policy (17) and (18),

P{‖θ̂t − θ‖1 > ε} ≤ 2 exp(−µ2ε
2
√
t) + 2 exp(−µ3ε

2t)

for all ε > 0 and t ≥ 2.

The following Theorem establishes an O(
√
T ) upper bound

on the T -period regret incurred by the perturbed myopic
policy.

Theorem 1. (Sub-linear Regret). There exists a finite pos-
itive constant K such that, under the perturbed myopic
policy (17) and (18), the T -period regret is bounded by

∆(T ) ≤ K
√
T

for all T ≥ 2.

As part of the proof of Theorem 1, we establish that
the sequences of posted prices {pt} and contracts {Qt}
generated by the perturbed myopic policy converge to
the oracle optimal price p∗ and contract Q∗ in the mean
3 Note that ρ plays a role in determining the finite-time behavior
of the perturbed myopic policy. Nevertheless, the asymptotic order
of regret incurred by the policy remains the same for any choice of
ρ > 0.
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Fig. 1. Sequences of prices, contract offerings, and paramter estimates generated by the perturbed myopic policy (top)
and the myopic policy (bottom), compared against their oracle policy counterparts. The shaded area represents
their empirical confidence interval estimated using 500 independent realizations of the sequence of demand shocks.

square sense, respectively. We also remark that Chen et al.
(2014) consider a similar setting, which entails the online
control of a dynamic inventory system through pricing and
ordering decisions. They consider a different class of policy
designs, and similarly establish an O(

√
T ) upper bound on

the order of regret for the class of policies they consider.

5. CASE STUDY

In this section, we compare the performance of the myopic
policy against the perturbed myopic policy (with ρ = 0.05)
over a time horizon of T = 104 periods. We assume that
there are N = 104 customers participating in the DR
program. For each customer i, we select ai uniformly at
random from the interval [0.04, 0.20], and independently
select bi according to an exponential distribution (with
mean equal to 0.01) truncated over the interval [0, 0.1]. 4

Parameters are drawn independently across customers. For
each customer i, we let the demand shock have a normal
distribution with zero-mean and standard deviation equal
to 0.5, truncated over the interval [−2, 2]. We set the DA
energy price, the RT shortage price, and the RT overage
price to π = 0.5, π− = 1.7, and π+ = 0.2 ($/kWh),
respectively. Finally, we estimate the mean values and
confidence intervals associated with price, contract, and
parameter estimate trajectories using 500 independent
realizations of the experiment.

5.1 Discussion

Figure 1(f) illustrates an apparent lack of exploration in
the sequence of posted prices generated by the myopic
policy. That is to say, the myopic price sequence rapidly
converges to a fixed value, which on average substantially

4 This range of parameter values is consistent with the range
of demand price elasticities observed in several real-time pricing
programs operated in the United States, (DoE, 2006; Faruqui and
Sergici, 2010).
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Fig. 2. A plot of the T -period regret incurred by the
perturbed myopic policy ( ) compared to the T -
period regret incurred by the myopic policy ( ).

differs from the oracle optimal price. The same is true for
the sequence of forward contracts generated by the myopic
policy, as can be seen from Figure 1(g). The premature
convergence of the myopic price sequence, in turn, leads
to incomplete learning, as is depicted in Figures 1(h) and
1(i). As a consequence, the T -period regret incurred by the
myopic policy grows linearly in T , as shown in Figure 2.

On the other hand, the persistent variation in the sequence
of prices generated by the perturbed myopic policy induces
parameter estimates, which asymptotically converge to
the true parameter values, as can be seen from Figures
1(c) and 1(d). In Figures 1(a) and 1(b), one can observe
that the confidence intervals associated with the posted
price and contract sequences generated by the perturbed
myopic policy shrink to the optimal oracle values over
time. This provides empirical evidence supporting our
theoretical claim that the sequences of prices and contracts
generated by the perturbed myopic policy converge to their
oracle optimal values in probability.
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Fig. 1. Sequences of prices, contract offerings, and paramter estimates generated by the perturbed myopic policy (top)
and the myopic policy (bottom), compared against their oracle policy counterparts. The shaded area represents
their empirical confidence interval estimated using 500 independent realizations of the sequence of demand shocks.

square sense, respectively. We also remark that Chen et al.
(2014) consider a similar setting, which entails the online
control of a dynamic inventory system through pricing and
ordering decisions. They consider a different class of policy
designs, and similarly establish an O(

√
T ) upper bound on

the order of regret for the class of policies they consider.

5. CASE STUDY

In this section, we compare the performance of the myopic
policy against the perturbed myopic policy (with ρ = 0.05)
over a time horizon of T = 104 periods. We assume that
there are N = 104 customers participating in the DR
program. For each customer i, we select ai uniformly at
random from the interval [0.04, 0.20], and independently
select bi according to an exponential distribution (with
mean equal to 0.01) truncated over the interval [0, 0.1]. 4

Parameters are drawn independently across customers. For
each customer i, we let the demand shock have a normal
distribution with zero-mean and standard deviation equal
to 0.5, truncated over the interval [−2, 2]. We set the DA
energy price, the RT shortage price, and the RT overage
price to π = 0.5, π− = 1.7, and π+ = 0.2 ($/kWh),
respectively. Finally, we estimate the mean values and
confidence intervals associated with price, contract, and
parameter estimate trajectories using 500 independent
realizations of the experiment.

5.1 Discussion

Figure 1(f) illustrates an apparent lack of exploration in
the sequence of posted prices generated by the myopic
policy. That is to say, the myopic price sequence rapidly
converges to a fixed value, which on average substantially

4 This range of parameter values is consistent with the range
of demand price elasticities observed in several real-time pricing
programs operated in the United States, (DoE, 2006; Faruqui and
Sergici, 2010).
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Fig. 2. A plot of the T -period regret incurred by the
perturbed myopic policy ( ) compared to the T -
period regret incurred by the myopic policy ( ).

differs from the oracle optimal price. The same is true for
the sequence of forward contracts generated by the myopic
policy, as can be seen from Figure 1(g). The premature
convergence of the myopic price sequence, in turn, leads
to incomplete learning, as is depicted in Figures 1(h) and
1(i). As a consequence, the T -period regret incurred by the
myopic policy grows linearly in T , as shown in Figure 2.

On the other hand, the persistent variation in the sequence
of prices generated by the perturbed myopic policy induces
parameter estimates, which asymptotically converge to
the true parameter values, as can be seen from Figures
1(c) and 1(d). In Figures 1(a) and 1(b), one can observe
that the confidence intervals associated with the posted
price and contract sequences generated by the perturbed
myopic policy shrink to the optimal oracle values over
time. This provides empirical evidence supporting our
theoretical claim that the sequences of prices and contracts
generated by the perturbed myopic policy converge to their
oracle optimal values in probability.
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6. CONCLUSION

In this paper, we study the problem of optimizing the
expected profit of an aggregator. The aggregator purchases
energy in the form of demand reductions from a fixed
group of residential customers, and sells the (uncertain)
aggregate demand reduction in a two-settlement whole-
sale electricity market. The customers’ aggregate demand
function is assumed to be affine in price (with unknown
parameters) and subject to unobservable, additive random
shocks (with unknown distribution). We propose a data-
driven policy for setting DR prices and forward contract
offerings. We show that the proposed policy is consistent,
meaning that the sequences of prices and contracts that it
generates converge to the oracle optimal price and contract
in the mean square sense, respectively. Moreover, we show
that the regret incurred by the proposed policy over T
time periods is no more than O(

√
T ).

Although the perturbed myopic policy that we propose
yields a regret with a sublinear growth rate in the time
horizon T , its finite-time performance may leave something
to be desired. That is to say, the profit loss over finite
time horizons may be quite large in practice. Thus, as a
direction for future research, it would be of interest to
explore the design of policies with improved finite-time
performance guarantees.
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