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Abstract: We present a theoretical analysis of virtual bidding in a stylized model of a single bus,
two-settlement electricity market. North-American ISOs typically take a conservative approach
to uncertainty, scheduling supply myopically in day-ahead (DA) markets to meet expected
demand, neglecting the subsequent cost of recourse required to correct imbalances in the real-
time (RT) market. This can result in generation costs that far exceed the minimum expected
cost of supply. We explore the idea that virtual bidding can mitigate this excess cost incurred by
myopic scheduling on the part of the ISO. Adopting a game-theoretic model of virtual bidding,
we show that as the number of virtual bidders increases, the equilibrium market outcome tends
to the socially optimal DA schedule, and prices converge between the DA and RT markets. We
additionally analyze the effects of virtual bidding on social welfare and the variance of the price
spread. Finally, we establish a repeated game formulation of virtual bidding, and investigate
simple learning strategies for virtual bidders that guarantee convergence to the Nash equilibrium.
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1. INTRODUCTION

In electricity markets, virtual bidding (VB) allows market
participants to buy and sell electricity without the obliga-
tion to physically produce or consume it. This opens up
market participation to financial entities or third parties
without generation or load assets, allowing them to take
advantage of arbitrage opportunities and promote market
liquidity. VB is similar in nature to futures trading in
more traditional commodity markets, where contracts are
settled financially and no physical delivery takes place.

Deregulated electricity markets are typically characterized
by centralized multi-settlement markets administered by
an independent system operator (ISO). More specifically
these markets have both a day-ahead (DA) and real-
time (RT) market. In the DA market, the ISO collects
demand bids and supply offers from participants and,
based on the expected transmission network conditions,
determines an economic unit commitment and dispatch
with associated locational marginal prices (LMPs) for
each hour of the next day. A similar economic dispatch
procedure is conducted in the RT market, but in response
to real-time system conditions, typically at five to fifteen
minute intervals. The important distinction between the
two markets is that cleared DA schedules are just financial
contracts that can be settled at real-time prices, whereas
the RT market represents physical delivery of energy i.e.
no power flows in the DAmarket. It is this fact that enables
the inclusion of VB that is not backed by physical assets in
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electricity markets. 1 A more complete discussion of these
issues can be found in Hogan (2016).

A virtual bid in such a market structure is comprised of a
buy (sell) bid in the DA market, matched by a sell (buy)
offer in the RT market, such that any position taken up
in the DA is completely liquidated in the RT market, with
no obligation to physically produce or consume electricity.
This allows virtual bidders to arbitrage the price difference
between the DA and RT markets. This should in general
cause the DA and RT prices to converge in expectation, as
any price gap can be exploited by a risk neutral speculator.
This is why VB is sometimes referred to as convergence
bidding. It is also important here to highlight the difference
between explicit and implicit VB. In the absence of an
explicit VB mechanism, participants backed by physical
assets can still make implicit virtual bids, for example
bidding more capacity than they have available into the
DA market and then purchasing the shortfall on the
spot market in real time. Implicit VB can cause market
power issues, and compromise the integrity of load and
generation forecasts. Allowing a mechanism for explicit
VB, as described above, goes some way to mitigating
these issues. More broadly, whenever we discuss VB in
this paper, we are referring to explicit VB.

The benefits of virtual bidding are discussed at length in
Hogan (2016); Celebi et al. (2010); Isemonger (2006), and
are generally characterized as: improved liquidity, mitiga-
tion of market power, improved market efficiency and price
formation, reduced price volatility, and providing market
participants with the ability to hedge price risk. A poten-

1 VB is implemented in the majority of North-American ISOs,
including PJM, NYISO, ISO-NE, MISO, and CAISO.
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tial downside of virtual bidding highlighted in the above
works is the incentive for a virtual bidder in possession of a
bilateral or external position to influence the profitability
of this position through virtual trades. This is of particular
relevance to those traders in possession of financial trans-
mission rights (FTRs), as described in Ledgerwood and
Pfeifenberger (2013), to the effect that both ISO-NE and
PJM enforce revenue capping when a participant makes
a virtual bid which affects its own FTR revenue stream.
Parsons et al. (2015) also suggest that virtual traders
can exploit approximations in market designs to make
profits without improving system operation, for example
real-time ramping requirements that are not considered
in the DA market. Some attempts have been made to
quantify the efficiency effects of virtual bidding through
empirical studies testing for the existence of profitable
bidding strategies. See Saravia (2003); Borenstein et al.
(2008); Li et al. (2015); Jha and Wolak (2015).

In this paper we focus on the ability of virtual bidding to
improve outcomes in electricity markets with uncertainty.
Hogan (2016) emphasizes this as one of the most valuable
aspects of VB, yet also highlights the lack of rigorous
work or analysis in this area, mainly due to the complex-
ity involved. Modern electricity markets face increasing
uncertainty in both supply and demand with a grow-
ing penetration of renewable and distributed generation.
ISOs typically take a conservative approach to uncertainty,
scheduling supply myopically in the DA market to meet
expected demand, and neglecting the subsequent cost of
recourse required to correct imbalances in the real-time
(RT) market. They also hold significant reserve margins to
manage large deviations or deal with contingencies. This
deterministic approach to power markets provides reliable
and secure system operation, but it can be costly. Recent
advances in stochastic and robust optimization have shown
that significant cost reductions can be achieved by more
explicitly incorporating uncertainty into market clearing
algorithms. See Bertsimas et al. (2013); Munoz-Alvarez
et al. (2014); Hreinsson et al. (2015). Such approaches
are tractable for real, large-scale, power systems; however,
they face resistance from ISOs and system operators due
to their perceived complexity, opacity, and reduction in
system reliability.

We propose the novel thesis that, under certain assump-
tions, deterministic system operation with virtual bidding
approximates the results of stochastic system operation,
obviating the need for implementing new market algo-
rithms. We demonstrate this result on a stylized model
of a single bus, two-settlement electricity market. While
a simple model, the results are instructive and point the
way to models that more closely approximate the true
operation of real power systems in future work. Our model
is similar in nature to that proposed by Tang et al. (2016),
although the equilibrium analysis, welfare analysis, and
learning dynamics presented here are novel. All of these
analyses are shown to depend on the accuracy of the
aggregate beliefs of the population of virtual bidders. In
short, the wisdom of the crowd. Our contributions are as
follows:

• We characterize the unique, pure strategy Nash equi-
librium of a population of profit-maximizing virtual

bidders with heterogeneous beliefs about the market
in which they participate.

• We show that as the number of virtual bidders in-
creases, the DA ISO schedule approaches the socially
optimal schedule, and prices converge in expectation
between the DA and RT markets.

• We investigate simple learning strategies for indi-
vidual speculators and characterize conditions under
which they converge to the unique Nash equilibrium.

Organization: The remainder of the paper is organized as
follows. In Section 2, we formulate a model of the two-
settlement market and the virtual bidding mechanism.
In Section 3 we characterize the pure Nash equilibrium
among virtual bidders, and discuss its effect on social
welfare. In Section 4 we propose simple learning dynamics
under which virtual bidders reach the Nash equilibrium,
and Section 5 concludes.

Notation: Denote by R and R+ the sets of real
and nonnegative real numbers, respectively. Denote the
transpose of a vector x ∈ Rn by x�. Let x−i =
(x1, .., xi−1, xi+1, .., xn) ∈ Rn−1 be the vector including
all but the ith element of x. Denote by 1 the vector
of all ones, and by E := 11� a square matrix of all
ones. Denote by diag(x1, . . . , xn) the diagonal matrix with
diagonal elements {xi}ni=1.

2. MARKET MODEL

We consider a simplified model of a two-settlement elec-
tricity market administered by an independent system
operator (ISO) for a copper plate power system. 2 The
electricity market is cleared in two stages: day-ahead (DA)
and real-time (RT). In the DA market, the ISO must de-
termine an initial dispatch of supply subject to uncertainty
in the eventual realization of demand, which we assume to
be perfectly inelastic and denote by D ∈ R+. We describe
uncertainty in the ISO’s prior belief about demand by
modeling D as a random variable with mean µ := E[D]
and variance σ2 := Var(D).

The ability to schedule supply in the DA market is essen-
tial, as certain generation resources (e.g., coal and nuclear)
have limited ramping capability, and must therefore be
scheduled well in advance of the required delivery time.
We define the production cost in the DA market according
to a convex quadratic function of the form

CDA(x) :=
1

2
αx2,

for all production levels x ≥ 0. Here, α > 0 is assumed to
be fixed and known by the ISO.

In RT market, demand is realized, and any mismatch
between supply scheduled in the DA market, say x, and
the realized demand D must be compensated through
an adjustment of supply in the amount of D − x. The
subsequent balancing cost incurred in the RT market is
assumed to be a convex quadratic function of the form

CRT(D − x) :=
1

2
β(D − x)2 + γ(D − x),

2 We use the term copper plate here to imply a lossless, uncon-
strained transmission system.
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where β > 0, γ, are assumed fixed and known by the
ISO. 3 The inclusion of the affine term in the RT cost is an
approximation of the fact that in reality the DA and RT
cost functions will be coupled. Fast-ramping generators
that have not been dispatched in the DA market may
bid their spare capacity into the RT market.γ may be
interpreted as the minimum marginal cost of fast-ramping
generators in the RT market, such that γ = αx, where x
is the total capacity available in the DA market.

We define the total expected cost of supply incurred under
a DA schedule x ≥ 0 as

J(x) := CDA(x) + E[CRT(D − x)]. (1)

Finally, the price at which energy is traded in each of the
DA and RT markets is set by the ISO according to the
marginal cost of supply in each market. Accordingly, given
a DA dispatch of supply in the amount of x ≥ 0, the DA
and RT prices of energy are determined according to

PDA(x) := αx and PRT(D − x) := β(D − x) + γ,

respectively, and the RT-DA price spread is defined as

∆(x) := PRT(D − x)− PDA(x).

Naturally, a priori uncertainty in demand will manifest
itself as uncertainty in the RT price.

Remark 1. Implicit in our assumption of quadratic cost
functions, in both the DA and RT markets, is the assump-
tion that the underlying aggregate supply function in each
market is linear and affine respectively. This is a common
assumption in the power system economics literature, see
for example Baldick et al. (2004). Throughout the paper,
we interpret these supply functions as representing the true
marginal cost of generation in each market. The treatment
of more sophisticated models, which capture the effect of
generator strategic behavior on the determination of these
supply functions (in combination with strategic virtual
bidding) represents an interesting and open direction for
future research.

2.1 Conventional Market Clearing

The approach to market clearing practiced by the majority
of North-American ISOs today is inherently myopic in
nature. That is to say, the ISO schedules supply in the
DA market to minimize the immediate system cost based
on a point estimate (forecast) of demand, which we denote

by D̂. In doing so, the ISO neglects the subsequent cost of
recourse required to compensate imbalances that might
arise between supply scheduled in the DA market and
realized demand. Needless to say, the cost incurred by a
myopic approach to scheduling such as this may far exceed
the minimum expected cost of supply, which we formally
define as

J(x�) := min{J(x) : x ∈ R+}.
A straightforward calculation shows the optimal DA
schedule to satisfy 4

x� := argmin{J(x) : x ∈ R+} =
βµ+ γ

α+ β
.

3 We make no assumption on the relative values of α and β, although
generally in practice β > α, reflecting the fact that it is more
expensive to procure power in real-time than schedule it forward.
4 Finding this solution in the more general network case with
constraints amounts to solving a two-stage stochastic optimization
problem.

This optimal DA schedule results in an ex-ante no-
arbitrage condition, such that

PDA(x
�) = E[PRT(D − x�)].

This is equivalent to stating that the expected price spread
is equal to zero, E[∆(x�)] = 0. Myopic scheduling on the
part of the ISO will result in a non-zero price spread in
expectation

E[∆(D̂)] = (α+ β)
(
x� − D̂

)
,

which can be exploited by speculators for profit. In what
follows, we investigate the extent to which the speculative
behavior of virtual bidders might drive the procurement of
supply in the DA market towards the optimal procurement
level x�.

2.2 Virtual Bidding

Consider a two-settlement electricity market in which a
set of virtual bidders, N = {1, . . . , N}, participate. We
assume that each virtual bidder is risk-neutral and seeks
to maximize the expected profit they derive through price
arbitrage between the DA and RT markets. Moreover, we
assume that all virtual bids are quantity bids 5 , such that
the total supply x scheduled by the ISO in the DA market
takes the form

x = D̂ +

N∑
i=1

vi,

where vi ∈ R denotes the quantity bid of the ith virtual
bidder. We adopt the sign convention that vi > 0 (vi < 0)
corresponds to a demand bid (supply offer) in the DA
market. We denote by v = (v1, . . . , vN ) the virtual bid

profile, and by V :=
∑N

i=1 vi the aggregate virtual bid. It
follows that the DA and RT prices induced under a virtual
bid profile v are given by

PDA(x) = α(D̂ + V ),

PRT(D − x) = β(D − D̂ − V ) + γ,

respectively, and the RT-DA price spread is equal to

∆(D̂ + V ) = (α+ β)

(
βD + γ

α+ β
−
(
D̂ + V

))

These price functions are illustrated in Figure 1. In Figure
1a we see that the ISO schedules supply myopically to meet
expected demand. In Figure 1b, the RT price is determined
by the realization of demand. In Figure 1c the DA schedule
is adjusted due to virtual bidding. In Figure 1d, we see
that the RT price is still determined by the realization of
demand, but is impacted by the virtual bids. In the model
we consider, we allow for asymmetry in the beliefs held by
individual virtual bidders regarding the market in which
they participate. Namely, we assign to each virtual bidder
i ∈ N a belief defined according to the tuple (αi, βi, γi, µi),
representing what virtual bidder i believes the DA and RT
cost coefficients and mean value of demand to be. 6 The

5 In practice, virtual bids allow for the specification of both price and
quantity, thereby allowing virtual bidders to reveal their willingness
to pay (accept) in addition to their quantity bid (offer).
6 For now it is assumed that the ISO forecast of demand D̂ is
common knowledge, although this will not be necessary for the
learning dynamics presented in Section 4.
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where β > 0, γ, are assumed fixed and known by the
ISO. 3 The inclusion of the affine term in the RT cost is an
approximation of the fact that in reality the DA and RT
cost functions will be coupled. Fast-ramping generators
that have not been dispatched in the DA market may
bid their spare capacity into the RT market.γ may be
interpreted as the minimum marginal cost of fast-ramping
generators in the RT market, such that γ = αx, where x
is the total capacity available in the DA market.

We define the total expected cost of supply incurred under
a DA schedule x ≥ 0 as

J(x) := CDA(x) + E[CRT(D − x)]. (1)

Finally, the price at which energy is traded in each of the
DA and RT markets is set by the ISO according to the
marginal cost of supply in each market. Accordingly, given
a DA dispatch of supply in the amount of x ≥ 0, the DA
and RT prices of energy are determined according to

PDA(x) := αx and PRT(D − x) := β(D − x) + γ,

respectively, and the RT-DA price spread is defined as

∆(x) := PRT(D − x)− PDA(x).

Naturally, a priori uncertainty in demand will manifest
itself as uncertainty in the RT price.

Remark 1. Implicit in our assumption of quadratic cost
functions, in both the DA and RT markets, is the assump-
tion that the underlying aggregate supply function in each
market is linear and affine respectively. This is a common
assumption in the power system economics literature, see
for example Baldick et al. (2004). Throughout the paper,
we interpret these supply functions as representing the true
marginal cost of generation in each market. The treatment
of more sophisticated models, which capture the effect of
generator strategic behavior on the determination of these
supply functions (in combination with strategic virtual
bidding) represents an interesting and open direction for
future research.

2.1 Conventional Market Clearing

The approach to market clearing practiced by the majority
of North-American ISOs today is inherently myopic in
nature. That is to say, the ISO schedules supply in the
DA market to minimize the immediate system cost based
on a point estimate (forecast) of demand, which we denote

by D̂. In doing so, the ISO neglects the subsequent cost of
recourse required to compensate imbalances that might
arise between supply scheduled in the DA market and
realized demand. Needless to say, the cost incurred by a
myopic approach to scheduling such as this may far exceed
the minimum expected cost of supply, which we formally
define as

J(x�) := min{J(x) : x ∈ R+}.
A straightforward calculation shows the optimal DA
schedule to satisfy 4

x� := argmin{J(x) : x ∈ R+} =
βµ+ γ

α+ β
.

3 We make no assumption on the relative values of α and β, although
generally in practice β > α, reflecting the fact that it is more
expensive to procure power in real-time than schedule it forward.
4 Finding this solution in the more general network case with
constraints amounts to solving a two-stage stochastic optimization
problem.

This optimal DA schedule results in an ex-ante no-
arbitrage condition, such that

PDA(x
�) = E[PRT(D − x�)].

This is equivalent to stating that the expected price spread
is equal to zero, E[∆(x�)] = 0. Myopic scheduling on the
part of the ISO will result in a non-zero price spread in
expectation

E[∆(D̂)] = (α+ β)
(
x� − D̂

)
,

which can be exploited by speculators for profit. In what
follows, we investigate the extent to which the speculative
behavior of virtual bidders might drive the procurement of
supply in the DA market towards the optimal procurement
level x�.

2.2 Virtual Bidding

Consider a two-settlement electricity market in which a
set of virtual bidders, N = {1, . . . , N}, participate. We
assume that each virtual bidder is risk-neutral and seeks
to maximize the expected profit they derive through price
arbitrage between the DA and RT markets. Moreover, we
assume that all virtual bids are quantity bids 5 , such that
the total supply x scheduled by the ISO in the DA market
takes the form

x = D̂ +

N∑
i=1

vi,

where vi ∈ R denotes the quantity bid of the ith virtual
bidder. We adopt the sign convention that vi > 0 (vi < 0)
corresponds to a demand bid (supply offer) in the DA
market. We denote by v = (v1, . . . , vN ) the virtual bid

profile, and by V :=
∑N

i=1 vi the aggregate virtual bid. It
follows that the DA and RT prices induced under a virtual
bid profile v are given by

PDA(x) = α(D̂ + V ),

PRT(D − x) = β(D − D̂ − V ) + γ,

respectively, and the RT-DA price spread is equal to

∆(D̂ + V ) = (α+ β)

(
βD + γ

α+ β
−
(
D̂ + V

))

These price functions are illustrated in Figure 1. In Figure
1a we see that the ISO schedules supply myopically to meet
expected demand. In Figure 1b, the RT price is determined
by the realization of demand. In Figure 1c the DA schedule
is adjusted due to virtual bidding. In Figure 1d, we see
that the RT price is still determined by the realization of
demand, but is impacted by the virtual bids. In the model
we consider, we allow for asymmetry in the beliefs held by
individual virtual bidders regarding the market in which
they participate. Namely, we assign to each virtual bidder
i ∈ N a belief defined according to the tuple (αi, βi, γi, µi),
representing what virtual bidder i believes the DA and RT
cost coefficients and mean value of demand to be. 6 The

5 In practice, virtual bids allow for the specification of both price and
quantity, thereby allowing virtual bidders to reveal their willingness
to pay (accept) in addition to their quantity bid (offer).
6 For now it is assumed that the ISO forecast of demand D̂ is
common knowledge, although this will not be necessary for the
learning dynamics presented in Section 4.
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x

PDA(x)

D̂ = µ

(a) DA Market, No VB

(D − x)

PRT(D − x)

0 D̂ = µ

(b) RT Market, No VB

x

PDA(x)

D̂ + V

(c) DA Market, With VB

(D − x)

PRT(D − x)

−V D̂ = µ

(d) RT Market, With VB

Fig. 1. DA and RT Markets, with and without virtual
bidding

expected payoff to virtual bidder i ∈ N , under a virtual
bid profile v, is therefore defined according to

πi(vi, v−i) : = E
[
∆i(D̂ + V )vi

]
,

= (αi + βi)
(
x�
i −

(
D̂ + V

))
vi (2)

where ∆i(·) is the RT-DA price spread calculated using
the beliefs of virtual bidder i, and x�

i := (µiβi + γi)/(αi +
βi) represents the implicit estimate of the optimal DA
schedule x� by virtual bidder i. The collection of payoffs
π = (π1, . . . , πN ) together give rise to a normal-form
(Cournot) game between the virtual bidders, which we re-
fer to as the virtual bidding game. We define its equilibrium
as follows.

Definition 1. (Nash equilibrium). The bid profile v ∈ RN

defines a pure strategy Nash equilibrium of the virtual
bidding game if for each i ∈ N , it holds that

πi(vi, v−i) ≥ πi(vi, v−i) for all vi ∈ R.

3. EQUILIBRIUM ANALYSIS

We proceed with an explicit characterization and analysis
of the equilibrium of the virtual bidding game defined in
Section 2.2. Before proceeding, it will be convenient to
measure the quality of the belief that each virtual bidder
i ∈ N holds about the market in which they participate
according to the quantity

ηi := x�
i /x

�,

Naturally, the closer ηi is to one, the more accurate is the
belief held by virtual bidder i. We say that virtual bidder
i has perfect belief if ηi = 1. We define the market belief
profile according to the vector η := (η1, . . . , ηN ). With this
notation in hand, we present the following characterization
of the equilibrium of the virtual bidding game.

Theorem 1. The virtual bidding game admits a unique
pure strategy Nash equilibrium v� ∈ RN satisfying

v�i =

(
ηi −

∑N
j=1 ηj

N + 1

)
x� −

(
1

N + 1

)
D̂, (3)

for each i ∈ N .

The theorem is proved in Appendix A. It is immediate
to see that under perfect beliefs (i.e., ηi = 1 for all
i ∈ N ), this unique pure strategy Nash equilibrium v�

is symmetric, and reduces to

v�i =
x� − D̂

N + 1
, (4)

for all i ∈ N . All further discussion in this Section
refers to the unique pure strategy Nash equilibrium under
heterogeneous beliefs in (3). We see that the equilibrium
action of each virtual bidder is to fill some fraction of
the quantity gap between the optimal DA schedule and
the myopic ISO schedule. This equilibrium action of each
virtual bidder is a function of the quality of their own
belief, and the average quality of the beliefs of all virtual
bidders.

3.1 The Wisdom of Crowds

We wish to consider the effect on virtual bidding on the
physical DA schedule at equilibrium, which is given by

xN := D̂ +

N∑
i=1

v�i .

It is first useful to characterize the belief quality of the
‘crowd’ of virtual bidders. One way to model this is to
assume that the individual beliefs of virtual bidders are
drawn in an independent and identically distributed (IID)
fashion from a common probability distribution. That is
to say, we model the belief profile η = (η1, . . . , ηN ) as
a collection of IID random variables having mean and
variance

µη := E[ηi] and σ2
η := Var(ηi),

for all i ∈ N . In addition, we assume the belief profile η
to be independent of the demand D. 7

Definition 2. (Wisdom of the crowd). We define the crowd
of virtual bidders to be wise if µη = 1, i.e., their belief is
correct on average.

It is not difficult to show that the DA schedule and price
spread, which emerge at equilibrium, satisfy

xN =

(
1

N + 1

N∑
i=1

ηi

)
x� +

(
1

N + 1

)
D̂

and

∆(xN ) = (α+ β)

(
βD + γ

α+ β
− xN

)
.

We have the following Corollary to Theorem 1, which
characterizes their asymptotic values as the the number
of virtual bidders grows large.

Corollary 1. (Asympotic Market Efficiency). Assume that
the virtual bidders collectively behave according to the

7 This assumption may be strong, as it is not unreasonable to expect
that the quality of private estimates and demand may be correlated
in some fashion.
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Nash equilibrium (3). As the number of virtual bidders
participating in the market grows large, it holds that

lim
N→∞

xN = µηx
�

and

lim
N→∞

E [∆(xN )] = (α+ β)(1− µη)x
�.

Namely, if the crowd is wise (i.e., µη = 1), the DA schedule,
which emerges at the Nash equilibrium, converges to the
optimal DA schedule as the number of virtual bidders
tends to infinity. As a result, the expected price spread
between the RT and DA markets also converges to zero.
Such asymptotic market behavior is to be expected, as
a large number of virtual bidders will naturally compete
away any ex-ante arbitrage opportunity.

We draw the following conclusions from this result, as-
suming that the desired outcome of implementing virtual
bidding is improved market efficiency. First, it is important
to have a crowd. The larger the number of virtual bidders,
the smaller the expected arbitrage opportunity available to
each bidder at equilibrium, and the closer one gets to the
optimal DA schedule at equilibrium. In reality, the number
of participants is likely to be determined by transaction
costs associated with virtual bidding, and the risk premia
that risk-seeking or risk-averse virtual bidders will demand
or are willing to pay. It is not in the interests of an ISO to
restrict access to virtual bidding markets in any way, for
example through uplift payments associated with virtual
bids as described in Hogan (2016).

Second, it is important that the crowd is wise. This is
not something that can be prescribed per se, but is a
phenomenon that has been observed in many contexts.
From estimating the weight of an ox, Galton (1907), to
modern day prediction markets, Surowiecki (2004), the
crowd average generally outperforms individual estimates.
One might also surmise that if participants have skin in
the game, they are more likely to be invested in the quality
of their own estimate, thus improving the crowd estimate.

Third, Corollary 1 holds for an arbitrary ISO forecast of

demand D̂. Of course, the closer D̂ is to x�, the closer xN

will be to x�. It remains to be seen whether an aggregate
crowd estimate of x�, could outperform one generated by
a central ISO.

Given our distributional interpretation of beliefs, it is also
possible to explicitly characterize the variance of the price
spread, which results at the Nash equilibrium. Recalling
that Var(D) = σ2, the spread variance in the absence of
virtual bidding is easily calculated as

Var(∆(D̂)) = β2σ2.

In the presence of virtual bidders, we have

Corollary 2. The spread variance at the virtual bidding
Nash equilibrium is equal to

Var(∆(xN )) = β2σ2 + (α+ β)

(
κ2

σ2
η

N
(x�)2

)
. (5)

where κ := N
N+1 is a nondimensional parameter measuring

the size of the crowd.

It follows directly that

Var(∆(xN )) ≥ Var(∆(D̂))

for any number of virtual bidders N . It can also be seen
that as the number of virtual bidders grows large, it holds
that

lim
N→∞

Var(∆(xN )) = Var(∆(D̂))

This result is independent of the wisdom of the crowd, and
states that at equilibrium the variance of the price spread
under virtual bidding is lower bounded by the variance of
the price spread under the myopic ISO schedule. Under
these assumptions, the spread variance never decreases
after the introduction of virtual bidding. This is due to the
underlying variance in demand, that is not addressed at
all by virtual bidding. Additionally, a large variance in the
distribution of beliefs among virtual bidders only serves to
worsen the variance of the spread, although this effect is
mitigated as the number of virtual bidders increases.

This theoretical result would seem to be at odds with
empirical results presented by Jha and Wolak (2015),
which demonstrate that spread variances decreased after
the introduction of virtual bidding in the CAISO market.
However, it should be noted that they attribute this reduc-
tion in variance to the reduction of implicit virtual bidding
by physical assets, and the fact that DA physical genera-
tion schedules should be closer to their real-time outputs
under explicit virtual bidding, thereby reducing the need
for costly purchases by the ISO to account for deviations in
real-time. In our analysis we have not considered implicit
virtual bidding by physical participants, but this would
present an interesting avenue for further study. One could
conjecture that under implicit virtual bidding the spread
variance might increase due to both the false reporting of
true physical production schedules, and heterogeneity of
beliefs among implicit virtual bidders.

3.2 Welfare Analysis

We now investigate the social welfare properties of the vir-
tual bidding Nash equilibrium. As demand is assumed to
be inelastic, social welfare is naturally defined according to
the expected cost of generation J(x), which we previously
defined in (1). To simplify the analysis we assume that a

myopic ISO takes as its demand forecast D̂ = µ, although

the results hold for arbitrary forecasts D̂.

We first see that under a myopic ISO dispatch, D̂ = µ, in
the absence of virtual bidding, the generation cost takes
the form

J(µ) =
1

2

(
αµ2 + βσ2

)
.

If the ISO adopts the socially optimal dispatch x�, then
the generation cost is

J(x�) = J(µ)− 1

2

(γ − αµ)2

(α+ β)
.

As expected, we see that J(x�) ≤ J(µ). We note the
following identity

x� − µ =
γ − αµ

α+ β
,

such that

J(x�) = J(µ)− 1

2
(α+ β)(x� − µ)2.

We now consider the generation cost at the equilibrium
of virtual bidders. Since we assume that the individual
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Nash equilibrium (3). As the number of virtual bidders
participating in the market grows large, it holds that

lim
N→∞

xN = µηx
�

and

lim
N→∞

E [∆(xN )] = (α+ β)(1− µη)x
�.

Namely, if the crowd is wise (i.e., µη = 1), the DA schedule,
which emerges at the Nash equilibrium, converges to the
optimal DA schedule as the number of virtual bidders
tends to infinity. As a result, the expected price spread
between the RT and DA markets also converges to zero.
Such asymptotic market behavior is to be expected, as
a large number of virtual bidders will naturally compete
away any ex-ante arbitrage opportunity.

We draw the following conclusions from this result, as-
suming that the desired outcome of implementing virtual
bidding is improved market efficiency. First, it is important
to have a crowd. The larger the number of virtual bidders,
the smaller the expected arbitrage opportunity available to
each bidder at equilibrium, and the closer one gets to the
optimal DA schedule at equilibrium. In reality, the number
of participants is likely to be determined by transaction
costs associated with virtual bidding, and the risk premia
that risk-seeking or risk-averse virtual bidders will demand
or are willing to pay. It is not in the interests of an ISO to
restrict access to virtual bidding markets in any way, for
example through uplift payments associated with virtual
bids as described in Hogan (2016).

Second, it is important that the crowd is wise. This is
not something that can be prescribed per se, but is a
phenomenon that has been observed in many contexts.
From estimating the weight of an ox, Galton (1907), to
modern day prediction markets, Surowiecki (2004), the
crowd average generally outperforms individual estimates.
One might also surmise that if participants have skin in
the game, they are more likely to be invested in the quality
of their own estimate, thus improving the crowd estimate.

Third, Corollary 1 holds for an arbitrary ISO forecast of

demand D̂. Of course, the closer D̂ is to x�, the closer xN

will be to x�. It remains to be seen whether an aggregate
crowd estimate of x�, could outperform one generated by
a central ISO.

Given our distributional interpretation of beliefs, it is also
possible to explicitly characterize the variance of the price
spread, which results at the Nash equilibrium. Recalling
that Var(D) = σ2, the spread variance in the absence of
virtual bidding is easily calculated as

Var(∆(D̂)) = β2σ2.

In the presence of virtual bidders, we have

Corollary 2. The spread variance at the virtual bidding
Nash equilibrium is equal to

Var(∆(xN )) = β2σ2 + (α+ β)

(
κ2

σ2
η

N
(x�)2

)
. (5)

where κ := N
N+1 is a nondimensional parameter measuring

the size of the crowd.

It follows directly that

Var(∆(xN )) ≥ Var(∆(D̂))

for any number of virtual bidders N . It can also be seen
that as the number of virtual bidders grows large, it holds
that

lim
N→∞

Var(∆(xN )) = Var(∆(D̂))

This result is independent of the wisdom of the crowd, and
states that at equilibrium the variance of the price spread
under virtual bidding is lower bounded by the variance of
the price spread under the myopic ISO schedule. Under
these assumptions, the spread variance never decreases
after the introduction of virtual bidding. This is due to the
underlying variance in demand, that is not addressed at
all by virtual bidding. Additionally, a large variance in the
distribution of beliefs among virtual bidders only serves to
worsen the variance of the spread, although this effect is
mitigated as the number of virtual bidders increases.

This theoretical result would seem to be at odds with
empirical results presented by Jha and Wolak (2015),
which demonstrate that spread variances decreased after
the introduction of virtual bidding in the CAISO market.
However, it should be noted that they attribute this reduc-
tion in variance to the reduction of implicit virtual bidding
by physical assets, and the fact that DA physical genera-
tion schedules should be closer to their real-time outputs
under explicit virtual bidding, thereby reducing the need
for costly purchases by the ISO to account for deviations in
real-time. In our analysis we have not considered implicit
virtual bidding by physical participants, but this would
present an interesting avenue for further study. One could
conjecture that under implicit virtual bidding the spread
variance might increase due to both the false reporting of
true physical production schedules, and heterogeneity of
beliefs among implicit virtual bidders.

3.2 Welfare Analysis

We now investigate the social welfare properties of the vir-
tual bidding Nash equilibrium. As demand is assumed to
be inelastic, social welfare is naturally defined according to
the expected cost of generation J(x), which we previously
defined in (1). To simplify the analysis we assume that a

myopic ISO takes as its demand forecast D̂ = µ, although

the results hold for arbitrary forecasts D̂.

We first see that under a myopic ISO dispatch, D̂ = µ, in
the absence of virtual bidding, the generation cost takes
the form

J(µ) =
1

2

(
αµ2 + βσ2

)
.

If the ISO adopts the socially optimal dispatch x�, then
the generation cost is

J(x�) = J(µ)− 1

2

(γ − αµ)2

(α+ β)
.

As expected, we see that J(x�) ≤ J(µ). We note the
following identity

x� − µ =
γ − αµ

α+ β
,

such that

J(x�) = J(µ)− 1

2
(α+ β)(x� − µ)2.

We now consider the generation cost at the equilibrium
of virtual bidders. Since we assume that the individual
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beliefs of virtual bidders are drawn in an IID fashion from
a common probability distribution we have that

J(xN ) = Eη [CDA(xN ) + ED [CRT(D − xN )]] (6)

where we must take expectations with respect to the
random belief profile η = (η1, . . . , ηN ). Assuming that the
crowd is wise (i.e., µη = 1), it can be shown that

J(xN ) =
1

2

(
αµ2 + βσ2

)

+
1

2
(α+ β)

(
κ2

σ2
η

N
(x�)2 + κ(κ− 2)(x� − µ)2

)
,

We see that J(xN=0) = J(µ), and that J(xN→∞) = J(x�),
as expected. In general, however, virtual bidding may
actually increase the generation cost due to the positive
contribution from the variance of virtual bidders’ beliefs.
This can generally be characterized as occuring for a low
number of virtual bidders, with high variance in beliefs.
For a given variance, this positive term will be offset by
a sufficiently large population of virtual bidders, since the
final term is a strictly decreasing function of N , on the
interval N ∈ [0,∞). We can in fact explicitly characterize
the number of bidders after which the generation cost is
strictly decreasing and less than or equal to the cost under
a myopic ISO dispatch, denoted Ndec. For a fixed set of
parameters (α, β, γ, µ, ση), we have

Ndec = σ2
η

(x�)2

(x� − µ)2
− 2.

For the generation cost to be strictly decreasing for all
N ≥ 1, we require that

σ2
η ≤ 3(x� − µ)2

(x�)2

At equilibrium, for N ≥ Ndec, virtual bidders never profit
at the expense of loads. The expected cost of generation
decreases in the presence of virtual bidders, and the
marginal cost reduction associated with the addition of
a new virtual bidder is always positive.

The exact impact of virtual bidders on social welfare will
be a function of the specific market parameters, however
these results highlight again the importance of a crowd
of virtual bidders. Even the effect of a high variance in
beliefs can be mitigated by the presence of a large number
of virtual bidders.

4. REACHING EQUILIBRIUM

While the above results hold at the unique Nash equilib-
rium of the virtual bidders, actually reaching this equilib-
rium is a more subtle question. We consider simple learning
dynamics for each virtual bidder, assuming that the two-
settlement market is a repeated game in a homogeneous
environment. In practice this might represent one hour of
a day across many weeks, assuming similar patterns of
weather and demand.

The best response of virtual bidder i is defined as

vBR
i := argmax{πi(vi, v−i) : vi ∈ R}

assuming that the actions of the other virtual bidders v−i

are given. It can be shown that this is equal to

vBR
i =

1

2

(
x�
i −

(
D̂ + V−i

))

where V−i =
∑

j �=i vj . At equilibrium vBR
i is equivalent to

v�i in (3).

We consider a smoothed best-response learning dynamic,
where at each iteration virtual bidder i plays a weighted
sum of their previous action and their best response to
the previous actions of all other bidders, with smoothing
parameter θi, where 0 ≤ θi ≤ 1. See Fudenberg and Levine
(1998); Hopkins (1999). The learning dynamic then takes
the form

vi(k + 1) = θivi(k) + (1− θi)v
BR
i (k) (7)

= θivi(k) +
(1− θi)

2

(
x�
i −

(
D̂ + V−i(k)

))
(8)

where vi(k), V−i(k) represents the value of vi, V−i, respec-
tively at the kth iteration, and vBR

i (k) represents the best
response of player i to the actions of all other players at
iteration k. We note that virtual bidder i will observe the
quantity (D̂+V−i(k)), assuming that the DA ISO dispatch
x(k) is published. We also note that x�

i is only dependent
on the beliefs of virtual bidder i. Thus (8) represents a
valid learning dynamic, dependent only on the available
information at each iteration. We also assume that the
myopic ISO dispatch D̂ does not change, and that each
virtual bidder does not change their beliefs (αi, βi, γi, µi).

If θi = 0, then this learning dynamic would constitute
naive best response, where the virtual bidder plays their
optimal action at each iteration assuming other virtual
bidders do not change their actions. It is interesting to note
that this same naive best response strategy is obtained if
one attempts to solve (2) using gradient descent with exact
line search, suggesting that virtual bidding could in fact
be a form of gradient-descent algorithm that approximates
the solution of the ISO problem.

Remark 2. An alternate interpretation of the learning dy-
namic in (8) is as the expected trajectory under a random-
ized update policy. At each iteration the virtual bidder i
adopts their previous action with probability θi, and their
best response to the previous actions of all other bidders
with probability (1 − θi). All the following results hold
for this stochastic learning dynamic; however, the concept
of asymptotic stability is replaced with convergence in
expectation.

4.1 Stability and Convergence Analysis

We assume that all virtual bidders adopt the learning dy-
namic in (8). Considering the collective learning dynamics
of all virtual bidders it can be shown that

(v(k + 1)− v�) = AΘ(v(k)− v�)

where AΘ is defined as

AΘ :=
1

2
((I+Θ)− (I−Θ)E)

where Θ = diag(θ1, . . . , θN ).

We have the following result

Theorem 2. As k → ∞, v(k) → v�, under the learning
dynamics in (8), if

N − 3

N + 1
< θi < 1, ∀i = 1, . . . , N (9)

The theorem is proved in Appendix B. Theorem 2 is
equivalent to stating that the unique pure Nash equilib-
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rium is globally asymptotically stable under the learning
dynamics in (8), if condition (9) is satisfied.

We note that naive best response, i.e. θi = 0, is only
asymptotically stable for N < 3. As N grows larger, the
feasible range of θi, over which the learning dynamics are
asymptotically stable, shrinks. As to whether real virtual
bidders would adopt smoothing parameters which satisfy
(9) is unclear.

We now consider the speed of convergence of the learning
dynamics. We have that

(v(k + 1)− v�) = AΘ (v(k)− v�)

= (AΘ)
k
(v(0)− v�)

‖(v(k + 1)− v�)‖ = ‖ (AΘ)
k
(v(0)− v�) ‖

≤ ‖AΘ‖k‖ (v(0)− v�) ‖
= ρ (AΘ)

k ‖ (v(0)− v�) ‖,
where ρ(AΘ) denotes the spectral radius of AΘ. We see
that the virtual bidders converge linearly in expectation
to the Nash equilibrium at the rate of the spectral radius
of AΘ. It can be shown that

ρ (AΘ) = max

(
1 + θmax

2
,
(1− θmin)

2
N − 1 + θmin

2

)

For fast convergence we want ρ (AΘ) as small as possible.
This minimum is achieved if all virtual bidders adopt the
same smoothing parameter θi =

N−2
N+2 , ∀i = 1, . . . , N . For

large N , this convergence will be slow. More generally, the
speed of convergence is limited by the fact that the only
information each virtual bidder receives on the actions of
the other players is the sum of their bids. This means that
if we allowed virtual bidders to update and improve their
estimates (αi, βi, γiµi), at each iteration this would not
necessarily improve the speed of convergence. In fact it
would only serve to shift the Nash equilibrium towards
the equilibrium under perfect beliefs. If we assume that
the crowd is wise, µη = 1, and remains wise as virtual
bidders improve their private estimates, then the quality
of the information received by each virtual bidder, namely
the sum of the bids of other bidders, is not improved by
updated private beliefs.

5. CONCLUSIONS

We have analysed a simple model of a two-settlement
market under a myopic ISO dispatch, which provides
insight into the equilibrium behavior of virtual bidders.
The key results are as follows. At equilibrium, if the
crowd of virtual bidders is wise, the DA schedule tends to
the social optimum, and the expected price spread tends
to zero, as the number of virtual bidders grows large.
Additionally the variance of the price spread under virtual
bidding is always greater than or equal to the variance
in the case where there is no virtual bidding, explicit or
implicit. We have also proposed simple learning dynamics,
which have as their asymptotically stable equilibrium the
Nash equilibrium of the virtual bidding game.

It is important to acknowledge the differences between
this simplified model and real-world two-settlement power
markets. One problem, highlighted by Parsons et al.
(2015), is that typically the DA and RT clearing algo-
rithms are run in different ways. Namely that the DA

dispatch must consider commitment costs, and the RT dis-
patch must consider constraints such as ramping limits of
generation. Another issue is that virtual bids are settled at
DA hourly prices, but the RT market is typically run every
5-15 minutes. The ‘RT price’ that is used to settle virtual
bids is often the average hourly RT price. These concerns
distort the incentives of virtual bidders, and can lead to
undesirable behavior. Furthermore, real power markets are
run on networks, with generation and load varying from
node to node, in addition to requiring DA schedules to
satisfy transmission constraints and contingency scenarios.
We hope to address this general network problem in future
work.

Finally, the environment in which real virtual bidders are
speculating and learning is far from homogeneous. It is in
fact highly heterogeneous, with network conditions, gen-
eration costs, and parameter distributions changing from
day to day. This makes learning very difficult, and it is
questionable whether virtual bidders can ever reach the
equilibrium solutions presented in this paper. An inter-
esting piece of further work would be to understand how
far away the actions of real bidders are from equilibrium
and the effect that this has on social welfare and price
convergence.
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Appendix A. PROOF OF THEOREM 1.

Proof. Theorem 1. We begin by considering the payoff-
maximizing action v�i of virtual bidder i, given the actions
of all other virtual bidders v−i.

v�i = argmax{πi(vi, v−i) : vi ∈ R}
Since πi(vi, v−i) is a strongly concave function of vi, we
have that ∇πi(v

�
i , v−i) = 0 is a neccesary and sufficient

condition for optimality. Solving we find that

v�i =


x�

i −


D̂ +

N∑
j �=i

vj + v�i




 (A.1)

We now assume that an equilibrium v� = (v�1 , . . . , v
�
N )

exists, and will show that this is indeed the case. Summing
over v�j , we see that

N∑
j=1

v�j =


x�

N∑
j=1

ηj −ND̂ −N

N∑
i=1

v�j




= x�

∑N
i=1 ηi

N + 1
− N

N + 1
D̂

(A.2)

Substituting (A.2) into (A.1), we see that

v�i =

(
ηi −

∑N
j=1 ηj

N + 1

)
x� −

(
1

N + 1

)
D̂

Since ∇πi(v
�
i , v

�
−i) = 0, ∀i, this is an equilibrium of the

virtual bidding game, and is unique due to the strong
concavity of the payoff function. �

Appendix B. PROOF OF THEOREM 2.

Proof. Theorem 2. We assume that all virtual bidders
adopt the learning dynamic in (8), and denoting η =

[η1, . . . , ηN ]�, and χ =
(
ηx� − D̂1

)
, we have the full

system update as

v(k + 1) = Θv(k) +
(I−Θ)

2
(χ− (E− I)v(k))

=
(I+Θ)− (I−Θ)E

2
v(k) +

(I−Θ)

2
χ

It is straightforward to show that v� in (3) is a unique
fixed point of this iteration. It can also be shown that

(v(k + 1)− v�) = AΘ(v(k)− v�)

where AΘ and Θ are as defined in the text. To show asymp-
totic stability of the unique pure Nash equilibrium v� un-
der these learning dynamics, we require that |ρ(AΘ)| < 1.
We cannot characterize λ(AΘ) analytically, but we simply
require that λmax(AΘ) < 1, and λmin(AΘ) > −1. We have
that

λmax(AΘ) = λmax

(
(I+Θ) + (Θ− I)E

2

)

≤ λmax

(
I+Θ

2

)
+ λmax

(
(Θ− I)E

2

)

=
1 + θmax

2
− λmin

(
(I−Θ)E

2

)

≤ 1 + θmax

2
− λmin

(
(I−Θ)

2

)
λmin (E)

=
1 + θmax

2
and using a similar analysis it can be shown that

λmin(AΘ) ≥
1 + θmin

2
− (1− θmin)

2
N

Solving the following simple inequalities completes the
proof.

1 + θmax

2
< 1,

1 + θmin

2
− (1− θmin)

2
N > −1 �
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