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SUMMARY

A large body of literature exists on the filter design problem, assuming that the system to be filtered is known.
However, in most practical situations, the system is not known, but a set of measured data is available. In
such situations, a two-step procedure is typically adopted: a model is identified from this data set, and a filter
is designed based on the identified model. In this paper, we consider an alternative approach, which uses the
available data not for the identification of a model, but for the direct design of the filter. Such a direct design
is investigated within a parametric-statistical framework for both the cases of linear time-invariant and non-
linear systems. The noise is assumed to be stochastic, and optimality refers to minimizing the estimation
error variance. It is shown that the direct design has superior features with respect to the two-step design,
especially in the presence of modeling errors. Another relevant advantage of the direct design over the two-
step procedure is that minimum variance (Kalman) filters for nonlinear systems are, in general, difficult to
derive and/or to implement. On the contrary, the direct approach allows for a very efficient filter design. To
demonstrate the effectiveness of the proposed direct design, two examples are presented: the first is related
to estimation of the Lorentz chaotic attractor; the second, involving real data, is related to estimation of
vehicle yaw rate. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider a nonlinear discrete-time system S , described in state-space form:

xtC1 D F
�
xt ,eut�Cwtx

eyt DHy �xt ,eut�Cwty
ét DH´ �xt ,eut�Cwt´ (1)

where xt 2 X � Rnx is the state,eu t 2 U � Rnu is the known input,ey t 2 Y � Rny is a measured
output, ét 2 Z � Rn´ is the variable to estimate, wtx is the process noise, wty and wt´ are output
noises, the functions F , Hy and H´ are differentiable on X �U .

The problem is to design a filter that, operating oneu� andey� , � 6 t , gives an (possibly optimal
in some sense) estimate of the variable ét .

Optimal solutions to this problem have been derived in the case where the functions F , Hy and
H´ are linear, under different assumptions on noise and optimality criteria. In the case of stochastic
noises, the Kalman filter minimizes the estimation error variance [1–4]. In the case where the noise
and the variable ét belong to normed spaces, the H1 filter minimizes the induced norm from `2
to `2, the H2 filter minimizes the induced norm from `2 to `1, the `1 filter minimizes the induced
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norm from `1 to `1 [5–8]. In the case of nonlinear functions F , Hy and H´, optimal filters are, in
general, hard to derive, and the usual approach is to obtain approximate solutions such as extended
Kalman filters [1–3], unscented Kalman filters [9], ensemble filters [10], particle filters [11–13].

In all these works, the equations (1) describing the system to be filtered are assumed to be known.
However, in most practical situations, the system equations are not known, and a two-step procedure
is adopted: (1) a model of S is identified from data; and (2) a filter is designed from the identified
model. Note that, except for particular cases where H´ is actually known, measurements not only
ofey t but also of ét are needed in step 1 to have a sufficiently informative data set for model identi-
fication. Then, not a problem of filter design from known system has to be solved, but a problem of
filter design from data (FD2). Note that the latter problem is more general than the former one.

As previously noted, the usual approach to solve the FD2 problem is a two-step procedure, based
on model identification from data and filter design from the identified model. However, this pro-
cedure is, in general, far from being optimal, as a result of the following reasons: (1) only an
approximate model can be identified from measured data, and a filter which is optimal for the
identified model may display a very large estimation error when applied to the real system; and
(2) in the case of nonlinear system, designing a computationally tractable optimal filter is, in gen-
eral, very difficult, and most of the times only approximate filters can be derived, whose stability is
not even guaranteed. Evaluating how these two sources of approximation affect the filter estimation
accuracy is a largely open problem. Note that robust filtering does not provide, at present, an effi-
cient solution to the FD2 problem. Indeed, the design of a robust filter is based on the knowledge
of an uncertainty model, for example a nominal model plus a description of the parametric uncer-
tainty. However, identifying reliable uncertainty models from experimental data is an open problem,
especially for nonlinear systems. Moreover, in the case of nonlinear systems, designing a compu-
tationally tractable robust filter is, in general, hard (see [14, 15]) and only approximate filters are
commonly used [16, 17].

In this paper, an alternative approach is developed, which overcomes all these issues. This
approach uses measured data not for the derivation of a model, but for the direct design of the filter.
Indeed, the desired solution of the FD2 problem is a causal filter mapping .eu � ,ey � /! b́t , � 6 t ,
producing as output an estimate b́t of ét , enjoying some optimality property of the estimation errorét � b́t . Thus, the idea is to directly design a filter from the available data, via identification of a
filter that, using the inputs .eu t ,ey t / gives an output b́t , which minimizes the desired criterion for
evaluating the estimation error ét � b́t . Such a filter is indicated as Direct Virtual Sensor (DVS).
The direct approach thus represents a paradigm shift in filter design, which allows us to design opti-
mal filters even for nonlinear systems, overcoming critical problems such as model uncertainty and
nonlinear filter approximation.

The direct approach has been developed within a Set Membership framework for linear time-
invariant (LTI) systems [18], linear parameter-varying (LPV) systems [19], and nonlinear systems
[20]. Practical applications can be found in [21–25].

In the present paper, the direct approach is developed within a parametric-statistical framework
for both the cases of LTI and nonlinear systems. The noises wtx and wty , are assumed to be stochas-
tic, a parametric filter structure and a Prediction Error (PE) method [26] are used for DVS design,
and an optimality notion related to minimizing the estimation error variance is considered. In both
the cases of LTI and nonlinear systems, an optimal DVS is derived and compared with the filter
obtained by means of the standard two-step procedure, based on model identification and minimum
variance filter design. It is shown that even in the most favorable situations for the two-step proce-
dure, that is when the system S belongs to the model structure selected for identification and the
minimum variance filter can be actually designed for the identified model, the DVS has estimation
error variance no greater than the two-step filter. Moreover, in the presence of modeling errors, the
DVS, although not absolutely optimal, is the minimum variance estimator among the selected filter
class. A similar result is not assured for the two-step filter, whose performance deterioration caused
by the modeling errors may be significantly larger.

†A preliminary version of this paper has been presented at the American Control Conference 2006.
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It must be remarked that the contribution of this paper is not related to system identification but
to filter design, and that the main result obtained is showing that the direct approach is more effec-
tive than the two-step approach, in both the linear and nonlinear cases. It must also be noted that,
whereas here the direct approach is developed within a parametric-statistical framework, in [18],
[19], and [20], the direct approach has been developed within a Set Membership framework, where
the noises have been assumed unknown but bounded, and no parametric filter structures have been
used. Moreover, in [18, 19], and [20], no comparison with the two-step approach have been carried
out.

Two examples are presented to demonstrate the effectiveness of the proposed direct approach: the
first, involving simulated data, is related to estimation of the Lorenz chaotic attractor; the second,
involving real data, is related to estimation of vehicle yaw rate.

2. OBSERVABILITY NOTIONS AND PRELIMINARY RESULTS

In this section, some notations and observability notions used in the paper are introduced. Moreover,
some preliminary results basic for the derivation of the optimal DVSs are presented.

First, the case where the noises wtx and wty in Equation (1) are null is considered. The input and
the output of the system (1) corresponding to null noises are denoted by ut and yt , respectively.

Several definitions of observability can be found in the literature, see for example [27–31]. In
this paper, we use a notion of observability, similar to those considered in [29, 30], and to the
notion of state reconstruction in [32,33]. Let us introduce the following notation to indicate function
composition:

F k.x/
.
D F.F.: : : F„ ƒ‚ …

k times

.x/ : : ://, HyF.x/
.
DHy.F.x//.

Let us define the map

�
�
xt , ut , r

� .
D

2
6664

Hy
�
xt ,ut

�
HyF

�
xt ,ut ,ut�1

�
...

HyF
r�1

�
xt ,ut ,ut�1, ..,ut�rC1

�

3
7775 .

Note that �.�, �, r/ WRnxCrnu !Rrny and that, for given u 2Rrnu , �.�, u, r/ WRn!Rrny . The
i-th component of � is denoted by �i .

Definition 1
The couple .F ,Hy/ is observable if an integer r 2 Œ1,nx� and a set of indices Mnx D
¹i1, i2, : : : , inx º exist such that, for any u 2 U r � Rrnu , the map �.�, u,Mnx / W R

nx ! Rnx ,
defined as

�.x, u,Mnx /
.
D

2
6664

�i1 .x, u, r/
�i2 .x, u, r/

...
�inx .x, u, r/

3
7775

is a diffeomorphism with respect to x.

Observability as defined earlier implies that the state can be uniquely determined from a finite
number of input–output values, as stated by the following result. Suppose that an input sequence
u0, u1, : : : , ur�1 is applied to system (1) starting from an initial condition x0, and that the same
input sequence is applied to system ( 1) starting from an initial conditionbx0. Let the corresponding
output sequences be y0, y1, : : : , yr�1 andby0,by1, : : : ,byr�1, respectively.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1853–1872
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Lemma 1
If .F ,Hy/ is observable then, for any initial conditions x0 andbx0 ¤ x0 and any input sequence u0,
u1, : : : , ur�1, it holds that yr�1 ¤byr�1, where yr�1 D .yr�1, : : : , y0/ andbyr�1 D .byr�1, : : : ,by0/.
Proof
Consider that

y0 DHy
�
x0,u0

�
y1 DHy

�
x1,u1

�
DHyF

�
x0,u1,u0

�
...

yr�1 DHyF
r�1

�
x0,ur�1, ..,u0

�
.

This can be written as yr�1 D �
�
x0, u r�1, r

�
, where u r�1 D .ur�1, : : : ,u0/. Repeating this

argument for the initial conditionbx0, we obtainbyr�1 D� �bx0, u r�1, r
�
. Because .F ,Hy/ is observ-

able, then there exists a set of indices Mn D ¹i1, i2, : : : , inº such that the map �.x, u,Mn/ is a
diffeomorphism. Because a diffeomorphism is a one-to-one map, ifbx0 ¤ x0 then �

�bx0, u,Mn

�
¤

�
�
x0, u,Mn

�
. This implies that �

�bx0, u, r
�
¤ �

�
x0, u, r

�
and thusbyr�1 ¤ yr�1. �

Now, suppose that the noises wtx and wty in Equation (1) are not null. A result is presented, which
is essential in the next sections to derive the optimal DVSs.

Lemma 2
If .F ,Hy/ is observable, then a function f´ exists such that

ét D f´ �eyt , : : : ,eyt�nxC1,eut , : : : ,eut�nxC1,wt , : : : ,wt�nxC1
�

(2)

where wt D .wtx ,wty/.

Proof
The proof can be obtained by minor modifications of the proof of Lemma 1 in [20]. �

Note that if the system (1) is linear, then the function f´ in Equation (2) is linear.

Remark 1
Verifying the observability of a nonlinear system is an open problem in the literature. However,
Lemma 2, together with the validation analysis of [34], may give indications on observability verifi-
cation from a finite set of measured dataeu t ,ey t ,ét , t D 1, 2, : : : ,T . Indeed, according to Lemma 2,
the existence of the function f´ implies the system observability. On the other hand, the validation
analysis of [34] provides necessary and sufficient conditions for the existence of a function con-
sistent with the measured data and prior assumptions. These results may be used together for the
verification of the system observability. It must be noted that this verification method is still at a
preliminary stage and is the subject of current and future research.

3. THE FILTER DESIGN FROM DATA PROBLEM: DIRECT VERSUS TWO-STEP
APPROACH

In this section, the two-step approach to the FD2 problem is first described. Next, the direct filter
design approach is proposed for the considered parametric-statistical framework. Then, a theoreti-
cal comparison is performed between the two approaches for both the cases of LTI and nonlinear
system S .

Basic assumptions

� The functions F , Hy and H´ in Equation (1), defining the system S to be filtered, are not
known.
� .F ,Hy/ is observable.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1853–1872
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� A set of data ¹eu t ,ey t ,ét , t D 1, 2, : : : ,T º is available.
� The noises w t

x , w t
y and wt´ are unmeasured stochastic variables.

� Let NEvt
.
D limT!1

1
T

PT
tD1Ev

t , where E is the mean value (or expectation), and it is
assumed that the limit exists whenever the symbol NE is used.

Under these assumptions, the filter design problem can be formulated as follows:

Filter design problem: Design a causal filter that, operating on .eu � ,ey � /, � 6 t , gives an
estimate b́t of ét , having minimum estimation error variance NE

��ét �b́t��2 for any t .

The two-step design consists in model identification from data and filter design from the identified
model. In the model identification step, a parametric model structure

M.�M / W �M 2‚M

is selected, where ‚M is a compact subset of Rn�M and n�M is the number of parameters of the
model structure. This model structure defines the following model set:

M .
D ¹M.�M / W �M 2‚M º.

Then, a model cM of the system S is identified from the data set

DM
.
D ¹eu t , �ey t ,ét� , t D 1, 2, : : : ,T º.

Note that, in the data set DM ,eu t is considered as the input of the model M.�M / and
�ey t ,ét� as

its outputs. The PE method [26] is used for the identification of the model cM , obtained as

cM DM.b�M /
b�M D arg min

�M2‚M
JT .�M /

JT .�M /D
1

T

TX
tD1

1

2

��et .�M /��2

where et .�M / D
�ey t ,ét� � �ytM ,b́tM � is the PE of the model M.�M /, being

�
ytM ,b́tM � the

prediction given by M.�M /, and k�k is the `2 norm.
In the filter design step, a (steady-state) minimum variance filter

bK �K.b�M /
is designed to estimate ét on the basis of the identified model cM DM.b�M /. The filter bK gives as
output an estimate b́tK of ét , using measurements .eu � ,ey � /, � 6 t , thus providing a Model-based
Virtual Sensors. Note that the filter structure has not been chosen in the two-step procedure. It just
depends on the structure of the identified model.

In this paper, we propose an alternative approach to the FD2 problem, based on the direct identi-
fication of the filter from data. In such a direct approach, instead of selecting a parametric structure
for the model M.�M / as done in the two-step procedure, a parametric structure

V.�V / W �V 2‚V

is selected for the filter to be designed, where, ‚V is a compact subset of Rn�V and n�V is the
number of parameters of the filter structure. This filter structure defines the following filter set:

V .
D ¹V.�V / W �V 2‚V º.

A filter bV is then identified by means of the PE method from the data set

DV
.
D ¹

�eu t ,eyt� ,ét , t D 1, 2, : : : ,T º.
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Note that the setDV is different from the setDM , although both use the same data. In fact, in the
data set DV ,

�eu t ,eyt� are considered as the inputs of the filter V.�V / and ét as its output. Thus, bV
is obtained by means of the PE method as

bV D V.b�V /
b�V D arg min

�V 2‚V
JT .�V /

JT .�V /D
1

T

TX
tD1

1

2

��et .�V /��2 (3)

where et .�V / D ét�b́tV is the estimation error of the filter V.�V /, which has input .eu t , ey t ) and

output b́tV . The filter bV D V.b�V / can be used as a virtual sensor to generate an estimate b́tV of

ét from measurements .eu � ,ey � /, � 6 t . Thus, bV is a DVS, designed directly from data without
identifying a model of the system S .

The direct and two-step filter design approaches are now compared for both the cases of linear
and nonlinear system S .

3.1. Linear case

In this section, the case of linear system (1) is investigated. The considered assumptions are first
described, the main result is then presented, and this result is finally discussed.

Linear case assumptions:

� The system S described by Equation (1) is linear.
� The signalseu t andey t are bounded.
� The noises w t

x ,w t
y and wt´ are i.i.d. stochastic variables with zero mean and bounded moments

of order 4C ı, for some ı > 0.
� In the two-step approach, a uniformly stable linear model structure M.�M / is selected in the

identification phase. Assuming that the identified model cM is observable from the output yt ,
the filter bK is the (linear steady-state) Kalman filter designed to estimate ét on the basis of
the model cM .
� In the direct approach, a uniformly stable linear filter structure V.�V / is selected.

Note that, for the given linear observable model M.�M / of order nM , the corresponding Kalman
filter K.�M / is a linear stable filter of order nM . Thus, if a filter structure V.�V / of order nM is
selected, it results that K.�M / 2 V . The following theorem can now be presented:

Theorem 1
The following results hold with probability (w.p.) 1 as T !1:

(i) bV D arg minV.�V / NE
��ét �b́tV ��2.

(ii) If bK 2 V , then NE
��ét �b́tV ��2 6 NE ��ét �b́tK��2.

(iii) If S DM.�oM / 2M and K.�oM / 2 V , then bV is a minimum variance filter among all linear
causal filters mapping .eu � ,ey � /! ét , � 6 t .

(iv) If S DM.�oM / 2M, K.�oM / 2 V , M.�M / is globally identifiable, S is stable, and the data

are informative enough, then NE
��ét �b́tV ��2 D NE ��ét �b́tK��2.

Proof
The filter bV is obtained from a PE method using the data setDV , the uniformly stable filter structure
V.�V /, and a quadratic criterion. Lemma 8.2 of [26] can be applied, provided that the data set DV
is subject to condition D1 (see the Appendix). This condition requires that the transfer functions
fromeu t ,ey t , wtx ,w t

y and wt´ to ét are stable (i.e. have impulse responses with bounded `1 norm),
and that the signals eu t , ey t ,ét are jointly quasi-stationary. From Lemma 2, where in the present
case f´ is linear, it follows that the preceding transfer functions have finite impulse responses and

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1853–1872
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consequently are stable. Joint quasi-stationarity ofeu t ,ey t ,ét follows from this stability result and
Theorem 2.2 in [26].

All assumptions of Lemma 8.2 of [26] are thus verified (see the Appendix), giving

sup
�V 2‚V

jJT .�V /� NE
1

2

��et .�V /��2 j ! 0, w.p.1 as T !1.

The cost function JT .�V / thus converges to the variance of the estimation error (divided by
2). Because the convergence is uniform on ‚V , the minimizer b�V of JT .�V / also converges to a
minimizer (not necessarily unique) of the estimation error variance. This implies that

bV D arg min
V.�V /

NE
��ét �b́tV ��2 , w.p.1 as T !1, (4)

proving (i).
Claim (ii) is also proven, because bK is not ensured to have the same property.
Under the assumptions of (iii), the Kalman filter K.�oM / is the minimum variance estimator ofét , among all linear estimators making use of the measurementsey t andeu t . Because K.�oM / 2 V ,

then 9�oV such thatK.�oM /D V.�
o
V /. Thus, in the filter set V there exists at least one element giving

the minimum variance estimate of ét , among all linear estimators. This fact, together with Equation
(4), proves (iii).

Under the assumptions of (iv), from Theorems 8.2 and 8.3 (see [26] and the Appendix), it fol-
lows that b�M ! �oM , w.p.1 as T ! 1, that is OK ! K.�oM /, w.p.1 as T ! 1. Because the
Kalman filterK.�oM / is the minimum variance linear causal estimator of ét , claim (iv) follows from
(iii). �

This result shows that the solution of the FD2 problem provided by the direct procedure presents
better features than the one provided by the two-step procedure, even in the present linear case
where the optimal minimum variance (Kalman) filter design required by the two-step procedure can
be performed. Indeed, at best (e.g. under the assumption S 2M, i.e. no undermodeling), the filterbK is proven to be asymptotically optimal provided that the system S is stable, whereas the DVS bV
gives minimum variance estimation error, even in the case that the system S is unstable.

Even more favorable features of the direct approach over the two-step procedure are obtained in
the more realistic situation that S …M, because, in general, only approximate model structures are
used. For example, consider that the system S is of order nx (not known), and a model structure
of order nM < nx is selected. Then, it is not ensured that the corresponding Kalman filter bK gives
the minimal variance estimate of ét among all causal filters of the same order nM . On the contrary,
such an optimality feature holds for the DVS bV designed by selecting a filter structure of order
nV D nM < nx . Indeed, the accuracy deterioration of the Model-based Virtual Sensors bK with
respect to the DVS bV of the same order may be significant, see for example [24], [23].

3.2. Nonlinear case

In this section, the case of nonlinear system (1) is investigated. The considered assumptions are first
described, the main result is then presented, and this result is finally discussed.

Nonlinear case assumptions:

� The system S described by Equation (1) is nonlinear.
� The signalseu t andey t are bounded.
� The noises w t

x , w t
y and w t

´ are i.i.d. stochastic variables with zero mean.
� In the two-step approach, a nonlinear parametric model structure M.�M / is selected,

satisfying condition M1 of [35] (see the Appendix). The corresponding filter bK is the minimum
variance (nonlinear) filter for the identified model cM .

� In the direct approach, a parametric nonlinear regression form for the filter is considered:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1853–1872
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b́tV D fV .�V ,b́t�1V , : : : ,b́t�nVV ,eyt , : : : ,eyt�nV ,eu t , : : : ,eut�nV /. (5)

The related filter structure V.�V / is assumed to satisfy condition M1 of [35] (see the Appendix).

Condition M1 essentially means that the filter structure has uniform exponential fading memory,
that is, the remote past inputs are forgotten at an exponential rate. Note that the minimum vari-
ance filter bK can be described as well by a fading memory regression equation b́tK D fK.b́t�1K ,
: : : ,b́t�nVK , ey t , : : : ,ey t�nV , eu t , : : : ,eu t�nV / because, under quite general assumptions, fading

memory is necessary for a filter to give a bounded estimation error. The DVS bV is described by

b́tV D fV .b�V ,b́t�1V , : : : ,b́t�nVV ,ey t , : : : ,ey t�nV ,eu t , : : : ,eu t�nV /.
whereb�V is obtained from the optimization problem (3). Now, the following extension of Theorem 1
to the case where the system S is nonlinear is given.

Theorem 2
The following results hold w.p. 1 as T !1:

(i) bV D arg minV.�V / NE
��ét �b́tV ��2.

(ii) If bK 2 V , then NE
��ét �b́tV ��2 6 NE ��ét �b́tK��2.

(iii) If S DM.�oM / 2M and K.�oM / 2 V , then bV is a minimum variance filter.

Proof
The filter bV is obtained from a PE method using the data set DV , the filter structure V.�V /, and a
quadratic criterion. Lemma 3.1 of [35] can be applied, provided that the data set DV is subject to
condition S3 of [35] (see the Appendix). This condition requires that the mapping fromeu t ,ey t , w t

x

and w t
y to ét has exponential fading memory. In the present case, condition S3 holds, because from

Lemma 2, it follows that at any time t , ét depends only on a finite number of past values ofeu t ,ey t ,
w t
x and w t

y .
Then, Lemma 3.1 of [35] (see the Appendix), giving

sup
�V 2‚V

jJT .�V /� NE
1

2

��et .�V /��2 j ! 0, w.p.1 as T !1.

The cost function JT .�V / thus converges to the variance of the estimation error (divided by
2). Because the convergence is uniform on ‚V , the minimizer b�V of JT .�V / also converges to a
minimizer (not necessarily unique) of the estimation error variance, thus proving (i).

Claim (ii) immediately follows from (i).
In order to prove (iii), note that if S D M.�oM /, then the filter K.�oM / is the minimum vari-

ance estimator of ét , among all estimators making use of measurements eu t and ey t . Because
K.�oM / 2 V.�V /, then 9�oV such that K.�oM / D V.�oV /. Thus, in the filter set V , there exists at
least one element giving the minimum variance estimate of ét . This fact, together with (ii), proves
(iii). �

In view of Theorem 2, the comments on the advantages of the direct approach in solving the
FD2 problem reported after Theorem 1, extend also to the case of nonlinear systems. In addition, it
must be remarked that, in the nonlinear case, the minimum variance filter bK, in general, cannot be
actually computed, and only approximations of bK can be derived. These approximations may often
lead to large deteriorations in estimation accuracy with respect to the theoretical minimum variance.
Thus, the performance improvement of the direct approach over the two-step procedure for nonlin-
ear systems may be even more significant than for linear systems, because the direct approach can
take advantage of the recent advances in nonlinear system identification, leading to quite efficient
filter design, as shown by the examples presented in Section 4 and in [21–25].
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3.3. Summary of the Direct Virtual Sensor design

The DVS design procedure in the present parametric-statistical framework can be summarized as
follows:

Direct Virtual Sensor design procedure

� Collect a set of data DV
.
D ¹

�eu t ,ey t� ,ét , t D 1, 2, : : : ,T º from the system S .
� If the system S described by Equation (1) is linear, use a linear filter structure (e.g. ARX, OE,

ARMAX, state-space). Otherwise, use a nonlinear filter structure (e.g. NARX, NOE, NAR-
MAX), where the function fV in (5) is chosen according to one of the standard parametriza-
tions, which can be found in the literature (e.g. neural networks, polynomials, radial basis
functions, etc.).
� Using the data set DV and the chosen filter structure, design the DVS solving the optimization

problem (3).

If the system S is linear, the designed DVS is given by

b́tV Db�V � .b́t�1V , : : : ,b́t�nVV ,ey t , : : : ,ey t�nV ,eu t , : : : ,eu t�nV / (6)

where b�V 2 Rn´�nV .n´CnyCnu/, and � denotes the dot product. If the system S is nonlinear, the
designed DVS is given by

b́tV D fV .b�V ,b́t�1V , : : : ,b́t�nVV ,ey t , : : : ,ey t�nV ,eu t , : : : ,eu t�nV /. (7)

4. EXAMPLES

In this section, examples related to the FD2 problem for nonlinear systems are presented. Examples
for linear systems can be found in [22–25].

4.1. Example 1: estimation of Lorenz attractor

The Lorenz system is a nonlinear three-dimensional dynamical system derived from the simplified
equations of convection rolls arising in atmospheric dynamics. For certain parameter values, the
system exhibits chaotic behavior and displays what is called a strange attractor.

An explicit Euler discretization of the continuous-time Lorenz system has been considered:

xtC11 D .1� ��/ xt1C ��x
t
2

xtC12 D .1� �/ xt2 � �x
t
1x
t
3C ��x

t
1

xtC13 D xt3C �x
t
1x
t
2 � �ˇx

t
3

yt D xt1

´t D xt2x
t
3 (8)

where � D 0.01, � D 10, � D 28, ˇ D 2.6667. Note that, for such parameter values, the system is
characterized by a chaotic behavior, and thus filtering is a quite difficult task.

A set of 8000 data have been generated from Equation (8). The values of yt and ´t have been
corrupted by i.i.d. Gaussian noises of zero means and standard deviations 0.3 and 10, respectively.
Note that the standard deviation of yt is about 8.2, giving a signal to noise ratio of 27. The standard
deviation of ´t is about 250, giving a signal to noise ratio of 25.

The first 6000 data have been used for filter design:

Design data set:
DV

.
D ¹ey t ,ét , t D 1, : : : , 6000º.

The data from 6001 to 8000, not previously used for design, have been used for filter test:

Testing data set:
DT D ¹ey t , ´t , t D 6001, : : : , 8000º.
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The following filters have been derived:
Extended Kalman filter (EKF)
An extended Kalman filter (EKF) has been derived using as model the true system (8), and assum-

ing exact knowledge of the probability density functions of initial conditions and noise. Note that
this is the most favorable situation for the two-step approach, where in the first step, an exact iden-
tification is performed both of system dynamics and noise statistics. Obviously, this situation rarely
occurs in practical applications. The EKF filter has been obtained by linearization of Equation (8)
along the estimated trajectory.

Particle filter (PF)
A particle filter (PF) using Sampling Importance Resampling (SIR) (see e.g. [36], [12]) has been

implemented to sequentially filter the noisy observation set ¹ Qyt W t D 1, : : : , 8000º corresponding
to the chaotic Lorenz system (8). The SIR filter has been implemented using exact knowledge of the
deterministic Lorenz system equations (8), measurement noise statistics, and statistics on the initial
condition. Five hundred particles have been used to approximate the prior and posterior distribu-
tions sequentially. The distribution on the initial condition has been assumed Gaussian with identity
covariance and mean equal to the true initial condition.

This filter showed quite low filtering accuracy. Indeed, a SIR filter implemented in this way per-
forms poorly when trying to filter noisy observations coming from a deterministic chaotic system,
because the support for the posterior distribution on ét almost surely collapses to a single particle.
Particle filters use discrete sample-based distributions to approximate the true posterior distributions
being sought after. Because the system being studied is chaotic in nature, the particles making up
the sample-based distributions naturally become disperse with time. Consequently, particles drifting
far from the value of the true state receive low probability weights during the importance sampling
stage. As a result of their low weights, these particles are less likely to survive during the resampling
stage. This effect causes the support of the sample-based approximation of the posterior distribution
to almost surely collapse onto a single particle.

In order to prevent the support of the discrete approximation of the posterior distribution from
collapsing onto a single particle, we have implemented an ad hoc modification of the SIR filter,
which we denote as the PF filter. In this PF filter, at time t , before the importance sampling stage,
each particle pt is updated to pt 0 by perturbing it slightly by a zero mean Gaussian random vector
wt with diagonal covariance �2I:

pt 0 D pt Cwt .

Note that this method is akin to modeling the dynamical system as having additive Gaussian noise
wt . The purpose of these slight perturbations is to introduce variability in the particle population in
order to avoid collapse of the support onto a single particle. The key is to choose �2 large enough to
introduce reasonable separation between identical particles and small enough to avoid a significant
increase in the variance of the particle distribution.

Linear direct virtual sensor (LDVS)
A linear DVS has been designed from the data set DV following the procedure of subsection 3.3.

This DVS is given by

b́tL Db�L � .b́t�1L , : : : ,b́t�3L ,ey t , : : : ,ey t�3/ (9)

whereb�L D .0.3973, 0.1372, �0.0553, 0.0664, 0.0001, �0.0369, �0.0165/ and � denotes the dot
product.

Nonlinear direct virtual sensor (DVS)
A nonlinear DVS has been designed from the data set DV following the procedure of Subsec-

tion 3.3. This DVS is given by

b́tV D fV .b�V ,b́t�1V , : : : ,b́t�3V ,ey t , : : : ,ey t�3/.
The function fV is a hidden layer neural network (see e.g. [37]) composed by r neurons:

fV .�V ,'/D
rX
iD1

˛i� .ˇi � ' � �i /C 	 (10)
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where �V D ¹˛i ,�i , 	 2 R, ˇi 2 Rn' , i D 1, : : : , rº and � .h/ D 2=.1C e�2h/� 1 is a sigmoidal
function. Several neural networks of the form (10) with different number of neurons (from r D 1 to
r D 15) have been identified on the set DV by means of the NNOE function of the NNSYD Matlab
Toolbox [38]. A neural network composed by r D 6 neurons has been chosen.

Filtering results
The root mean square estimation error (RMSE) and the maximum estimation error in absolute

value (MAXE) provided by the filters on the testing data set are reported in Table I. The true signal
and the ones estimated by the designed filters are shown in Figure 1 for a portion of the testing data
set.

It can be noted that the estimation accuracy of the EKF filter is quite poor, even if this filter has
been designed using exact knowledge of system equations, noise statistics, and initial conditions
statistics. The estimation accuracy of the LDVS filter, although not extremely good, is still decent,
indicating that a very simple linear DVS can be significantly better than a quite complicated nonlin-
ear filters, even in filtering of complex nonlinear systems. This fact suggests that, in any filter design

Table I. Absolute (relative) RMSE and MAXE estimation
errors.

Filter RMSE MAXE

EKF 270 (110%) 1760 (230%)
PF 11 (4%) 106 (10%)
LDVS 55 (22%) 278 (38%)
DVS 6.3 (2.5%) 27 (3.5%)
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Figure 1. From top to bottom: EKF, PF, LDVS and DVS estimates. Dashed (black): true signal. Continuous
(colored): filter estimate. [The colored version of the figures is available online.]

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1853–1872
DOI: 10.1002/rnc



1864 C. NOVARA ET AL.

problem, it may be convenient to first try with a simple linear DVS, then move to more complex
nonlinear filters if the linear DVS does not give a satisfactory estimation accuracy. The PF filter
provides quite good estimation accuracy. The DVS filter provides an excellent estimation accuracy.
It must be remarked that the PF filter has been implemented using exact knowledge of system equa-
tions, noise statistics, and statistics on initial conditions, whereas the DVS filter has been designed
without using such a strong information.

4.2. Example 2: estimation of vehicle yaw rate

In this example, filter design for estimating the vehicle yaw rate has been considered. The knowledge
of such a variable is used by Vehicle Dynamics Control (VDC), a highly studied active safety system
aimed at enhancing the vehicle stability, see, for example [39]. The VDC generally provides a con-
trol action, which prevents the vehicle from under-steering or over-steering in a handling maneuver
(e.g. lane change, steering angle step, etc.). In order to generate the required control actions, the
commercially available VDC systems use the values of yaw rate, lateral acceleration, and vehicle
longitudinal velocity, measured by appropriate sensors. However, the cost of the yaw rate sensors
alone is quite high compared with the overall cost of the VDC system. Thus, the availability of an
accurate yaw rate virtual sensor, eliminating the need of the yaw rate sensor, could allow a signifi-
cant reduction in the VDC systems production costs and, consequently, a larger diffusion of active
safety systems on commercial cars, even in the segments B and C.

Filter design has been performed using the experimental data measured on a passenger car pro-
vided by Fiat Auto S.p.A. The data have been obtained from different maneuvers, including steering
angle steps of different amplitude (from 30 to 80 degrees), double lane changes, and frequency
sweeps performed on a dry road. The data set is composed of the measurements of the following
variables: P t W yaw rate, ˛tS W steering angle, aty W lateral acceleration, and vt

lon
W longitudinal veloc-

ity. A set of 2641 data has been recorded over a time interval of 211 s. with a sample time of 0.08 s.
The data are shown in Figure 2.

Considering the case in which the VDC control actuation is realized by steering, the vehicle
dynamics relating these variables may be described by the set of equations (1), where the steering
angle and the longitudinal velocity are the measured inputs:eu t D .˛tS , vt

lon
/, the lateral acceleration

is the measured output:ey t D aty , and the yaw rate is the variable to be estimated: ét D P t .
The data set corresponding to the first 132 s of the complete data set has been used for filter

design:

Design data set:

DV D ¹.eu t ,ey t /,ét , t D 1, : : : , 1656º

D ¹.˛tS , vtlon, aty/, P 
t , t D 1, : : : , 1656º.

The designed filters have been tested on the set composed of the data recorded from second 132
to second 211 of the complete data set, not previously used for design:

Testing data set:

DT D ¹.eu t ,ey t /,ev t , t D 1657, : : : , 2641º

D ¹.˛tS , vtlon, aty/, P 
t , t D 1657, : : : , 2641º.

The following filters have been designed:
Kalman filter designed from an identified linear parameter-varying physical model (KF)
The filter KF has been designed from a physical model of vehicle lateral dynamics. A large lit-

erature exists on deriving physical models describing this dynamics (see e.g. [40], [41]). It must be
remarked that, in the working conditions of the VDC systems, this dynamics is quite complex, and
thus obtaining accurate models is, in general, a difficult task.
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The following LPV model, called single-track model (see e.g. [40], [42]), has been considered:

mvtlon.t/
P̌.t/Cmvtlon.t/

P .t/D Fyf .t/CFyr.t/

J R .t/D aFyf .t/� bFyr.t/Cwx.t/

Fyf .t/C lf =v
t
lon.t/

PFyf .t/D�cf .ˇ.t/C a P .t/=v
t
lon.t/� ˛S .t//

Fyr.t/C lr=v
t
lon.t/

PFyr.t/D�cr.ˇ.t/� b P .t/=v
t
lon.t//

ay.t/D .Fyf .t/CFyr.t//=mCwy.t/ (11)

where ˇ is the side-slip angle, P is the yaw rate, Fyf and Fyr are the front and rear axle lateral
forces, vt

lon
is the longitudinal vehicle speed, ˛S is the steering angle, wx is the process noise mod-

eled as a disturbing torque, wy is measurement noise on the lateral acceleration output. The model
parameters are: m is the vehicle mass, J is the moment of inertia around the vertical axis, a and
b are the distances between the center of gravity and the front and rear axles respectively, lf and
lr are the front and rear tire relaxation lengths, and cf and cr are the front and rear axle cornering
stiffnesses. The inputs of the model are ˛S and vt

lon
, the outputs are ay and P .

The values of these parameters have been identified from the following data set:

Identification data set:

DM D¹eu t , .ey t ,ét /, t D 1, : : : , 1656º

D ¹.˛tS , vtlon/, .a
t
y , P t /, t D 1, : : : , 1656º.
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Figure 2. Recorded data. Sequence of manoeuvres: four steering steps, two frequency sweeps, one
double-lane change, four steering steps, one double-lane change, one frequency sweep.
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Identification has been performed using a nonlinear optimization routine, minimizing the cost
function

J .�/D a1

TX
tD1

�ey t �by t .�/�2C a2
TX
tD1

�ét �b́t .�/�2C 8X
iD1

bi
�
�nomi � �i

�2

whereby t .�/ is the lateral acceleration simulated by a discretization of the model (11), b́t .�/ is the
simulated yaw rate, and � D Œm, J , a, b, lf , lr , cf , cr � is the vector of the parameters to estimate.
a1, a2 and bi ’s are weighting coefficients aimed at balancing the contributions of the various terms
in the cost function. The term

P8
iD1 bi

�
�nomi � �i

�2
has been added in order to guarantee that the

estimated parameters are not too different from the nominal ones, given by �nom D Œ1715, 2697,
1.07, 1.47, 0.1, 0.1, 89733, 114100�, so that the identified model maintains a reasonable physical
meaning. Identification has also been performed without this term: a model has been obtained, with
accuracy very similar to the one presented here, but with parameters having poor physical meaning.
For example, the value estimated for the mass m was 867 Kg (smaller than a half of the nominal
value), i.e. a value which has nothing to do with the real car from which the data have been col-
lected. Note that this drawback is quite typical when the prediction error method is used to identify
the parameters of a physical model: using only the criterion of prediction error minimization may
yield a model whose parameters have been forced to give a good fitting of the data, but have poor
physical reliability.

Several values of the weighting coefficients have been considered and, correspondingly, sev-
eral discrete-time models have been identified. A model representing an acceptable compromise
between physical meaning and accuracy has been selected, obtained using the following weights:
a1 D 1.6e5, a2 D 336, b1 D b2 D 2, b3 D : : : D b8 D 1. The parameter vector of this model isb� D Œ1681, 2280, 0.95, 1.5, 0.375, 0.53, 98351, 134570�. It can be noted that these parameters are
not very different from the starting ones in �nom, and still maintain a reasonable physical meaning.
In Figure 3, the data simulated by the identified single-track model are compared with the measured
data on a portion of the testing data set, for both the outputs aty and P t . It can be observed that the
model turns out to be fairly accurate.

The KF has been designed from this model, assuming the following variances: QD 105 (process
noise variance) and RD 0.04 (measurement error variance).
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Figure 3. Comparison between experimental data and simulation of the identified single-track model. Bold
(black) line: experimental data. Dashed (blue) line: single-track model. [The colored version of the figures

is available online.]
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Particle filter (PF)
A PF using SIR has been implemented to sequentially filter the noisy measured observations

of the vehicle lateral acceleration ay in order to estimate the vehicle yaw rate. The PF filter has
been implemented assuming the vehicle to behave according to the identified single-track vehicle
dynamics (11). One hundred particles have been used to approximate the prior and posterior dis-
tributions sequentially. The distribution on the initial condition has been assumed Gaussian with
identity covariance and mean equal to zero.

Extended Kalman filter designed from an identified nonlinear model (EKF)
The following Nonlinear Auto-Regressive with eXternal input model structure has been consid-

ered:

vtM D fM .�M , vt�1M , : : : , vt�nMM ,eu t�1, : : : ,eu t�nM / (12)

where vtM D .y
t
M , ´tM / is the model output and fM is a neural network of the form (10), composed

of r neurons.
Several orders nM and numbers of neurons r have been considered. Correspondingly, several

models of the form (12) have been identified from the data setDM , using the PE method by means
of the NNOE function of the NNSYD Matlab Toolbox [38]. A model with nM D 3, and r D 4,
showing good simulation accuracy, has been selected.

In order to design an Extended Kalman filter, the model has been written in the following
state-space form:

xtC1M D bF �xtM , eU t
�
Cwtx

ytM D
bHy

�
xtM , eU t

�
Cwty

´tM D
bH ´

�
xtM , eU t

�
(13)

where xt D .vtM , : : : , vt�2M /, eU t
D .eu t , : : : ,eu t�2/, and the functions bF , bHy , and bH ´ can be

directly obtained from fM .
An Extended Kalman filter has been designed from this state-space model, by linearization of

the equations (13) along the estimated trajectory. The following variances for the noises wtx and wty
have been assumed: QD 103I (noisewtx), where I is the identity matrix, and RD 0.04 (noisewty).

Direct virtual sensor (DVS)
A nonlinear DVS has been designed from the data set DV following the procedure of Subsec-

tion 3.3. This DVS is given by

b́tV D fV .�V ,b́t�1V , : : : ,b́t�3V ,ey t , : : : ,ey t�3,eu t , : : : ,eu t�3/.
The function fV is a neural network of the form (10), composed of r neurons. Several neural net-

works with different number of neurons (from r D 1 to r D 15) have been identified on the set DV
by means of the NNOE function of the NNSYD Matlab Toolbox [38]. A neural network composed
by r D 4 neurons has been chosen.

Filtering results
The root mean square estimation error and the maximum estimation error in absolute value pro-

vided by the filters are reported in Tables II and III for the different maneuvers of the testing data
set. In Figures 4 and 5, the measured yaw rate and the one estimated by DVS are compared in three
maneuvers of the Testing data set.

It can be noted that the DVS provides significantly better estimation accuracy compared with the
KF and PF filters. Another relevant advantage of the DVS with respect to the KF and PF filters is
the greater design simplicity. Indeed, DVS design only requires to identify a single-output filter. On
the other hand, the design of the KF or PF filter requires the following steps: (1) identification of a
two-output model (which is quite more complicated than identification of a single-output model);
and (2) filter design from the identified model.
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Table II. Absolute (relative) RMSE estimation errors (deg). Steering angle step
(SAS), Double-lane change (DLC), Frequency sweep (FS).

Maneuver KF PF EKF DVS

SAS 30o 0.34 (6%) 0.34 (6%) 0.36 (7%) 0.3 (4%)
SAS 50o 0.77 (8%) 0.64 (7%) 0.53 (7%) 0.44 (4%)
SAS 75o 2.57 (18%) 1.85 (13%) 1.05 (11%) 0.58 (4%)
DLC 1.43 (8%) 1.42 (8%) 1.19 (7%) 0.6 (3%)
FS 0.58 (8%) 0.60 (8%) 0.55 (8%) 0.3 (4%)

Table III. Absolute (relative) MAXE estimation errors (deg). Steering angle step
(SAS), Double-lane change (DLC), Frequency sweep (FS).

Maneuver KF PF EKF DVS

SAS 30o 1.06 (10%) 0.97 (9%) 0.93 (9%) 1.05 (10%)
SAS 50o 2.27 (14%) 2.24 (14%) 1.81 (11%) 1.29 (8%)
SAS 75o 5.49 (23%) 5.35 (22%) 3.05 (13%) 1.61 (7%)
DLC 5.58 (18%) 7.04 (22%) 4.73 (15%) 2.24 (7%)
FS 1.96 (12%) 2.16 (13%) 2.19 (13%) 1.22 (7%)
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Figure 4. Left: SAS 75o. Right: DLC. Dashed (black): measured yaw rate. Continuous (green): DVS
estimate. [The colored version of the figures is available online.]
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Figure 5. Left: FS, low frequencies. Right: FS, high frequencies. Dashed (black): measured yaw rate.
Continuous (green): DVS estimate. [The colored version of the figures is available online.]

5. CONCLUSIONS

In this paper, the problem of filter design for LTI and nonlinear systems is investigated within
a parametric-statistical framework. The paper presents advantages over the existing literature on
several aspects.
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First, the existing literature investigates problems that can be denoted as “filter design from known
systems”, indicating that the filter is designed assuming the knowledge of the equations describing
the system to be filtered. In this paper, a more general filtering problem is considered, denoted as
“filter design from data (FD2)”, where the system is not known, but a set of data is available. Clearly,
a solution to this problem can be obtained by identifying a model from data, whose equations are
then used by any of the available filter design methods for known systems. However, this two-step
procedure is, in general, not optimal. Indeed, finding optimal solutions to the filter design from data
problem appears to be not an easy task. In this paper, a methodology able to derive directly from
measured data an optimal filter is presented .

Second, even in the most favorable situations for the two-step design, that is, the system S belongs
to the model structure selected for identification and the minimum variance filter for the identified
model can be actually designed, the direct design leads to filters with estimation error lower or equal
to the one obtained from the two-step design. Moreover, in the presence of undermodeling, the direct
design leads to the minimum error estimator among the selected filter class. A similar result is not
ensured for filters obtained from the two-step design, whose performance deterioration caused by
undermodeling may be significantly large, see for example [24], [23], and the examples presented
in this paper.

Third, the advantages of the direct approach may be particularly relevant in the case of non-
linear system. Indeed, optimal filters for nonlinear systems are, in general, difficult to derive
and/or to implement, and approximate solutions often exhibit poor performance and stability prob-
lems. On the contrary, the direct approach can take advantage of the recent advances in nonlinear
identification, leading to very efficient filter design.

Fourth, the proposed direct approach is significantly simpler than the standard two-step approach.
Indeed, the DVS design only requires the identification of a single-output filter (with output ´). The
design of a two-step filter requires the identification of a multi-output model (with outputs ´ and y),
and, furthermore, the design of a filter from this model.

It can be concluded that the direct filter design is an efficient solution to the FD2 problem, having
features far superior to the two-step approach.

APPENDIX A: BASIC CONDITIONS AND RESULTS

In this appendix, some basic conditions and results of [35] and [26] are summarized, which are
used in Section 3 to prove our theorems. In the present context, these conditions and results can be
formulated as follows:

Consider a system in regression form

ét D g.ét�1, : : : ,ét�nx ,eq t , : : : ,eq t�nx /Cwt (14)

whereeq t 2Q �Rnq is a deterministic input, ét 2Z �Rn´ is the output, and wt 2Rn´ is an i.i.d.
stochastic noise with zero mean. Let W be the � -algebra generated by wt .

Condition S3 [35]
The system (14) is exponentially stable. That is, for any input sequenceeq t , and for any t , s W t > s,

there exist a random variable ´ts 2W independent of W such that

NE
��ét � ´ts��4 < C�t�s

for some 06 C <1 and 06 � < 1.

Condition S3 essentially means that ét can be approximated by a random variable ´ts that is inde-
pendent of the remote past. In other words, this condition requires that the mapping from eq t and
wt to ét has exponential fading memory. It is immediate to verify that the system (2) satisfies Con-
dition S3 because, at any time t , ét depends only on a finite number of past values ofeu t , ey t , and
wt D .wtx ,wty/.

Consider now a parametric model of the system (14):

b́t D f .� ,b́t�1, : : : ,b́t�nx ,eq t , : : : ,eq t�nx / (15)
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where � 2 ‚ � Rn� is a parameter vector. Note that, for fixed � 2 ‚, f .� ,'t / is a single model,
whereas for variable � 2‚, f .� ,'t / defines a model structure [26].

For any fixed � 2‚, the output b́t at time t is computed by iteration of the difference Equation
(15):

b́nxC1 Df .� ,b́nx , : : : ,b́1,eq nxC1, : : : ,eq 1/
b́nxC2 Df .� ,b́nxC1, : : : ,b́2,eq nxC2, : : : ,eq 2/

Df .� , f .� ,b́nx , : : : ,b́1,eq nxC1, : : : ,eq 1/, : : : ,b́2,eq nxC2, : : : ,eq 2/
...

b́t Df t �� , znx , qt
�

where znx D
�b́nx , : : : ,b́1� is the system initial condition, qt D

�eq 1, : : : ,eq t� is the input sequence,

and f t is the function obtained by t � nx compositions of the function f .

Condition M1 [35]

(i) The function f t is differentiable with respect to � for 8� 2 ‚, 8znx 2 Znx , 8qt 2 Qt ,
8t 2N.

(ii) ‚ is compact.
(iii) There exist 06 C <1 and 06 � < 1 such that

1/
��f t �� , znx , qt

�
� f t

�
� , znx , qt

���6 C t�1P
kD0

�k
��eqt�k �eqt�k��CC�t kznx � znxk

2/
��f t .� , 0, 0/

��6 C
for 8t 2N, 8znx , znx 2Znx , 8qt , qt 2Qt , 8� 2‚, where ‚ is an open neighborhood of ‚.

(iv) df t
�
� , znx , qt

�
=d� is subject to (iii).

Condition M1 essentially means that the model structure f .� ,'t / is uniformly exponentially
stable. It also means that the model structure has uniform exponential fading memory, that is, the
remote past inputs are forgotten at an exponential rate.

Suppose now that a set of measurements collected from the system (14) is available:

D
.
D ¹eq t ,ét , t D 1, 2, : : : ,T º

and the PE method [26] is used for the identification of a model of the system (14). This model,
denoted by cM D M.b�/, is of the form (15) and is identified solving the following optimization
problem:

b� D arg min
�2‚

JT .�/

JT .�/D
1

T

TX
tD1

1

2

��et .�/��2

where et .�/D ét�b́tM is the PE of the model M.�/, being b́tM the prediction given by M.�/, and
k�k is the `2 norm. Lemma 3.1 of [35] can now be reported.

Lemma 3.1 [35]
Let the system (14) be subject to Condition S3. Let the model structure f .� ,'t / be subject to

Condition M1. Then,

sup
�2‚

jJT .�/� NE
1

2

��et .�/��2 j ! 0, w.p.1 as T !1
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Lemma 3.1 holds, in general, for nonlinear systems, whereas a simplified version of it for linear
systems is given by Lemma 8.2 in [26]. This version is based on Condition D1 in [26] which, in the
present context, can be formulated as follows:

Condition D1 [26]

(i) eq t is a bounded input signal.
(ii) wt is an i.i.d. random variable with zero mean and bounded moments of order 4C ı, for some

ı > 0.
(iii) The system (14) is stable, that is X1

tD1
ht <1

where ht , t D 1, 2, : : :, ht 2Rn´ is the system impulse response.
(iv) eq t and ét are jointly quasi-stationary (see [26]).

Lemma 8.2 of [26] also uses the notion of uniformly stable model structure, which is a simplified
version of Condition M1 for linear systems (see [26] for details).

Lemma 8.2 [26]
Let the system (14) be linear and subject to Condition D1. Let the model structure f .� ,'t / W � 2

‚ be uniformly stable. Then,

sup
�2‚

jJT .�/� NE
1

2

��et .�/��2 j ! 0, w.p.1 as T !1.

An important corollary of Lemma 8.2 is the following.

Theorem 8.2 [26]
Let the system (14) be linear and subject to Condition D1. Let the model structure f .� ,'t / be

uniformly stable. Then,

b� !MS , w.p.1 as T !1

where MS is the set of minimizers of NE 1
2

��et .�/��2.

Under the additional conditions of globally identifiable model structure and informative enough
data set (see [26] for the related definitions), this lemma leads to the following theorem.

Theorem 8.3 [26]
Let the system (14) be linear, subject to Condition D1, and g.�/D f .�o, �/, for some �o 2‚. Let

the model structure f .� ,'t / be subject to Condition M1 and globally identifiable. Let the data set
D be informative enough. Then, MS D ¹�oº.
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