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Executive Summary

The legacy electricity system will involve into a grid with intelligent periphery (GrIP). There will

be IP addressable sensors everywhere, including every appliance, generator, storage resource, and

key nodes on electric transmission and distribution systems. These sensors connect to the internet.

Data from them are available anywhere, anytime. The distribution infrastructure will partially

support reconfigurable bi-directional power flow through intelligent switches. New expansion will

take place in the periphery. This expansion will be subject to local community control. It includes

renewable micro-generation, storage, combined heat and power, and highly adjustable demand.

More power will be generated locally and consumed locally. Largely self-sufficient communities,

or balanced clusters, that generate and consume most of their power locally will emerge. In the

following research summary, we describe a new architecture to enable this vision of a grid with

an intelligent periphery (GrIP). We design novel coordination strategies, analyze their benefit,

and simulate their performance. Our research demonstrates systemic value in managing resource

clusters, and offers a novel market mechanism design to monetize this value.

In Chapter 1, we offer a detailed description of the GrIP architecture and the various actors

involved in its operation.

In Chapter 2, we outline a systematic procedure to construct control-oriented models of demand-

side resource flexibility for both deferrable loads and Thermostatically Controlled Loads (TCLs).

It is widely accepted that TCLs can be used to provide regulation reserve to the grid. We first

argue that the aggregate flexibility offered by a collection of TCLs can be succinctly modeled as a

stochastic battery with dissipation. We next characterize the power limits and energy capacity of

this battery model in terms of TCL parameters and random exogenous variables such as ambient

temperature and user-specified set-points. In the proceeding chapter, we then describe a direct

load control architecture for regulation service provision where we use a priority-stack-based control

framework to select which TCLs to control at any time. The control objective is for the aggregate

power deviation from baseline to track an automatic generation control signal supplied by the

system operator.

In Chapter 3, we describe a direct load control architecture for regulation service provision where

we use a priority-stack-based control framework to select which of the Thermostatically Controlled

Loads) TCLs to control at any time. The control objective is for the aggregate power deviation

from baseline to track an automatic generation control signal supplied by the system operator.

Simulation studies suggest the proposed methodology works well in practical settings.
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In Chapter 4, we describe a novel forward market for differentiated electric power services, where

consumers consent to deferred service of pre-specified loads in exchange for a reduced per-unit

price for energy. The longer a consumer is willing to defer, the larger the reduction in price. The

proposed forward contract provides a guarantee on the aggregate quantity of energy to be delivered

by a consumer-specified deadline. Under the earliest-deadline-first (EDF) scheduling policy, which

is shown to be optimal for the supplier, we explicitly characterize a deadline-differentiated pricing

scheme that yields an efficient competitive equilibrium between supply and demand. We further

show that this efficient pricing scheme, in combination with EDF scheduling, is incentive compatible

(IC) in that every consumer would like to reveal her true deadline to the supplier, regardless of the

actions taken by other consumers.
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Chapter 1

The Role of Flexible Demand-Side

Resources

As the electric power industry transitions to a greater reliance on intermittent and distributed

energy resources, there is an increasing need for flexible resources that can respond dynamically to

weather impacts on wind and solar photovoltaic output. These renewable generation sources have

limited controllability and production patterns that are intermittent and uncertain. Such variability

represents one the most important obstacles to the deep integration of renewable generation into

the electricity grid. The current approach to renewable energy integration is to balance variability

with dispatchable generation. This works at today’s modest penetration levels, but it cannot

scale, because of the projected increase in reserve generation required to balance the variability in

renewable supply [12]. If these increases are met with combustion fired generation, they will both

be counterproductive to carbon emissions reductions and economically untenable.

As wind and solar energy penetration increases, how must the assimilation of this variable power

evolve, so as to minimize these integration costs, while maximizing the net environmental benefit?

Clearly, strategies which attenuate the increase in conventional reserve requirements will be an

essential means to this end. One option is to harness the flexibility in consumption on the demand

side. As such, significant benefits have been identified by the Federal Energy Regulatory Commis-

sion [18] in unlocking the value in coordination of demand-side resources to address the growing

need for firm, responsive resources to provide supply-demand balancing services (ancillary services)

for the bulk power system.

1
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Figure 1.1: A stylized example demonstrating the potential of coordinated aggregation to absorb

variability from renewable generation.

1.1 An Example of the Power of Coordinated Aggregation

Consider 100 EVs being charged over 8 hours. Maximum charging rates were 1.65KW. Each EV has

different energy needs over different service intervals. Service intervals were chosen randomly with

Gaussian arrivals/departures centered at 6pm/8am with 1.5 hour standard deviation. The residual

energy charge of the EV batteries was uniformly distributed between 5% and 95% of capacity.

The uncoordinated total load under uniform charging presented by these vehicles is the curve L.

Renewable generation R services 25% of the total energy needs of the EVs. The remaining net

load N1 = L - R is supplied by the core grid. If coordinated aggregation is used under the Earliest

Deadline First (EDF) scheduling policy, the loads absorb much of the variability. The remaining

coordinated net load N2 must be scheduled by the ISO. Notice in the above figure how dramatically

coordinated aggregation reduces the net load variability presented to the core grid . A more nuanced

simulation would reveal that coordinated aggregation improves net load predictability, reducing the

necessary operating reserve capacity.

1.2 The Grid with Intelligent Periphery (GrIP)

The legacy electricity system will involve into a grid with intelligent periphery. There will be IP

addressable sensors everywhere, including every appliance, generator, storage resource, and key

nodes on electric transmission and distribution systems. These sensors connect to the internet.

Data from them are available anywhere, anytime. The distribution infrastructure will partially

support reconfigurable bi-directional power flow through intelligent switches. New expansion will

take place in the periphery. This expansion will be subject to local community control. It includes
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renewable micro-generation, storage, combined heat and power, and highly adjustable demand.

More power will be generated locally and consumed locally. Largely self-sufficient communities, or

balanced clusters, that generate and consume most of their power locally will emerge.

Information and decisions in today’s grid are highly centralized [77]. Data such as power demand,

generator supply bids, and status of the grid infrastructure flow to a central system operator, where

they are processed by optimization algorithms that calculate control commands to be issued in

return. While sophisticated in design and occurring on multiple time scales, from hourly genera-

tion schedules to second-by-second load following and frequency regulation, this control regime is

essentially unidirectional and addresses a limited number of points. How will this change? With

the number and significance of peripheral resources [including small renewable generators, storage

devices, controllable loads, and network protection devices] growing into the hundreds of thousands

of relevant sensing and control nodes, the centralization of information flow and decision-making

becomes impractical for reasons of sheer scale, as well as resilience. Decision authority and infor-

mation flow both must be distributed.

How can this dual architecture of distributed decision and information flow be designed? Decentral-

ized Smart Grid control architectures are not new [78–80]. Our approach suggests the clustering

of resources, the functional organization of entities, and the factorization of information flow into

cyber information services and physical system application clients. Our research aims to illuminate

this architecture and supply detailed algorithms resident in these services and clients that explicitly

account for variability.

Figure 1.2: Layered Architec-
ture.

Figure 1.3:
Data flow.

Figure 1.4: Distributed Con-
trol Loops.
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1.2.1 Clusters

Peripheral resources and devices can be grouped functionally. A resource cluster [RC] is a [geo-

graphically dispersed, but usually homogenous] collection of resources that supply a service [ex:

storage, demand response]. Examples include micro-grids, community solar farms [81], and com-

mercial refrigeration resources offering demand response that are managed collectively [82].

A Balanced Cluster [BC] is a [local, but diverse] collection of resources that largely achieve internal

power balance. Any remaining mismatch between power consumption and production may be met

by contracted imports and exports. Balanced cluster aggregate their resources to present reduced

and managed variability to the grid. Thus, they mirror on a small scale the function of a larger

grid balancing authority. Current examples: zero-net-energy buildings [83] and Community Choice

Aggregation jurisdictions [84]. BCs relieve the core grid of the need to acquire reserves to counter

internal demand and supply variations. Further, a BC may increase overall system resilience if it

can be disconnected [islanded] without affecting grid stability.

1.2.2 Architecture

How can the resource clusters aggregate their capabilities? How can a resource cluster allocate its

resources to meet a service request? How can balanced clusters best be managed in order to benefit

the overall grid? How do we coordinate power balance with balanced clusters? Optimal solutions to

these question will require an architecture to organize data acquisition and decision making. Our

proposed GrIP architecture is depicted in Figure 1.2 and includes:

2 Cluster Coordinators [CC] manage resource clusters in order to meet a variety of objectives [ex:

conservation, increase profit, or promote a green mandate by maximizing renewable generation].

To maintain internal balance, the CC must have sufficient control over each resource and device

within the cluster; in reality, the degree of control authority will vary.

2 Grid Administrators [GA] represent clusters in a geographical region to a larger balancing

area authority or system operator of the core transmission system. The GA may enter into

contracts as a supplier of generation or ancillary services [ex: storage, reserves] to the grid,

as a load-serving entity, or as a dispatchable load, by combining the offers of its constituent

clusters.

2 The Distribution Operator [DO] services the local infrastructure in the legacy grid. The DO

may lease lines, but is not usually an active market participant.
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What operational flexibilities does this architecture afford? What are its advantages and short-

comings? A key function of the cluster coordinator is to prevent potential conflicts that arise in

peer-to-peer interactions. The intermediary role of the grid administrator is to present a single

point of contact - thus relieving the communications burden - to the system operator responsible

for wide-area stability across an extensive geographic region. Most importantly, we assert that this

layered architecture allows us to realize the core power system objectives of resilience and efficiency

with diverse, distributed, uncertain resources. Our research aims to comprehensively justify this

claim through analysis, simulation, and experiment.

1.2.3 Information Flow in Wide-Area Control Loops

Resources and devices transmit data about their current state and forecast their future state to

CCs, who run Information Services to achieve the cluster’s control objectives. This represents a

dynamic optimization problem under uncertainty. The resulting information is sent to the GA, who

aggregates the forecasts of the individual clusters and executes Application Clients. As discussed

below, these applications include resource management as well as infrastructural operations such

as network reconfiguration, which the GA undertakes in cooperation with the DO. The layered

information architecture provides the information appropriate to the decisions made by CC’s and

GA’s. The transformation from data to commands forms a feedback loop as shown in Figure 1.4.

How is this information flow optimally managed? In a näıve implementation there would be hun-

dreds of thousands of loops. We propose to factor these loops into common information services

that process the data into a set of sufficient statistics which summarize the state of the periph-

eral devices. These statistics are used by CC’s and GA’s to run applications that produce the

commands to actuate the resources. How are information services defined? A crucial research

problem is to define minimal sets of information services and the sub-routines that produce them,

and applications and associated algorithms.



Chapter 2

Modeling Demand-Side Flexibility

It is widely accepted that Thermostatically Controlled Loads (TCLs) can be used to provide reg-

ulation reserve to the grid. In this chapter, we first argue that the aggregate flexibility offered by

a collection of TCLs can be succinctly modeled as a stochastic battery with dissipation. We next

characterize the power limits and energy capacity of this battery model in terms of TCL parameters

and random exogenous variables such as ambient temperature and user-specified set-points. In the

next chapter, we then describe a direct load control architecture for regulation service provision

where we use a priority-stack-based control framework to select which TCLs to control at any time.

The control objective is for the aggregate power deviation from baseline to track an automatic

generation control signal supplied by the system operator.

2.1 Thermostatically Controlled Loads

Ancillary services provide for resources to handle supply-demand imbalances at various time-scales,

maintain power quality, and assure reliable power delivery under contingencies. There are many

different ancillary services. Of these, regulation reserve (or frequency regulation) and load-following

are the key services for maintaining the power balance under normal operating conditions. Load

following is a feed-forward approach and handles predictable and slower changes in load. Regulation

is a feedback strategy that mitigates faster and unpredictable changes in system load and corrects

unintended fluctuations in generation [49].

It is widely accepted that the deep penetration of renewable generation will substantially increase

the need for ancillary services [50–52]. Recent studies [53] project that the spring time maximum

up-regulation reserve needed to accommodate California’s 33% renewable penetration mandate will

6
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increase from 277 MW to 1,135 MW. Similar increases in down-regulation reserve are projected.

The maximum load-following requirement will need to increase from 2.3 GW to 4.4 GW. If these

additional ancillary services are provided by traditional fossil fuel generators, it will diminish the

net carbon benefit from renewables, reduce generation efficiency, and be economically untenable.

There is an emerging consensus that demand side resources must play a key role in supplying

zero-emission regulation service that is necessary for deep renewable integration. These include

TCLs, electric vehicles, and strategic storage. Existing programs, such as the SmartACTM program

of Pacific Gas and Electric (PG&E), aggregate residential Air Conditioners (ACs) for peak load

shaving and emergency load management [54]. Because these load control mechanisms are primarily

concerned with very low frequency changes in demand (i.e., the changes occur over hours timescale),

they are invoked infrequently and offer limited financial value. In contrast, there is an enormous

untapped potential for flexible loads to offer more lucrative fast ancillary services such as frequency

regulation or load-following.

Residential TCLs such as ACs, heat pumps, water heaters, and refrigerators, represent about 20%

of the total electricity consumption in the United States [55, 56], and thus offer significant potential

for provision of various ancillary services. TCLs have inherent thermal storage, so their electricity

consumption can be modulated while still meeting the desired temperature requirements of the end

user.

This chapter aims to provide a foundation for a practical method by which TCLs can be utilized

to provide regulation reserve to the grid. In the scheme we consider, an aggregator would contract

with owners of individual TCLs to directly control the electricity consumption of their units. Units

owners are assured that the temperature limits they specify through thermostat set-point selection

will be respected. We provide an important tool that would be useful to the aggregator: a simple,

compact battery model that characterizes the set of power profiles that the collection of TCLs can

accept while meeting their local constraints. This model depends on exogenous random processes

such as ambient temperatures, user specified set-points, and unit participation. The aggregator

could forecast these random processes and predict the admissible set of power profiles for the TCL

collection on a future window. This flexibility in power consumption is monetized by offering it in

ancillary service markets to provide regulation reserve. If the offer is accepted, the aggregator is

obligated to deliver the service at delivery time. The aggregator then uses a priority stack control

strategy to track an exogenous regulation signal supplied by the system operator.
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2.1.1 Main Contributions

TCLs are flexible in the sense that a variety of power trajectories are able to meet user-specified

temperature constraints. We consider a heterogeneous collection of TCLs indexed by k. We describe

TCLs with a simplified continuous power model. For each TCL, we define a nominal power profile

P ko and model its flexibility as the set Ek of permissible deviations from this nominal that result

in temperature trajectories which respect the dead-band constraints of the unit. The aggregate

flexibility U of the collection is the sum of the flexibilities of the individual units, i.e. U =
∑

k Ek.
This set has a complex structure.

We first introduce a generalized battery model B(φ) which serves as a compact, abstract repre-

sentation of a set of power signals. The battery model B(φ) has parameters φ = (C, n−, n+, α),

where C is the battery energy capacity, n− and n+ are the charge/discharge rate limits, and α is

the dissipation rate. This simple model is attractive as it is defined by a few physically intuitive

parameters. The main contribution of our work is to establish that the set U can be bounded by

two generalized battery models:

B(φ1) ⊆ U ⊆ B(φ2).

We offer explicit formulae for the battery parameters φ1 and φ2 in terms of individual TCL parame-

ters and exogenous random processes such as ambient temperature and user defined set-points. We

further show that the gap between these two models vanishes as the population of TCLs becomes

homogeneous.

We next offer a direct-load control architecture for an aggregator to provide frequency regulation

service from a collection of TCLs. This requires an ex ante contractual agreement with the system

operator that specifies two items on the forward delivery window: (a) the “nominal” or baseline

power consumption n(t) of the aggregate, and (b) the class of admissible regulation signals r(t). In

the event the offered service is accepted, the aggregator receives an Automatic Generation Control

(AGC) signal from the system operator and is obligated to ensure that the collection of TCLs

consumes power profile r(t) + n(t) in aggregate. The aggregator is also obligated to ensure that

power profiles allocated to each TCL must respect their temperature dead-band constraints. If

r(t) ∈ B(φ1), this is possible. If r(t) /∈ B(φ2), this is not possible. Thus, the aggregator will forecast

the battery parameters φ1 and offer the regulation capability B(φ1) which it is assured that it can

reliably deliver.

If the offered service is accepted, the aggregator receives an AGC signal r(t) ∈ B(φ1) from the

system operator, and must devise a run-time strategy to allocate the power r(t) + n(t) to the

various TCLs. This allocation must be causal and meet the user-defined temperature needs of
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the TCLs. We propose an allocation strategy based on priority stacks. Priorities are computed

based on temperature distance to switching boundary or time to reach the switching boundary.

The priority-stack-based strategy naturally accommodates operational constraints such as avoiding

short-cycling on each unit, and most importantly offers a generic architecture suitable for direct load

control of various flexible loads including electric vehicles and deferrable appliances. We explore

some details of the practical implementations of our control strategy, and illustrate our principal

ideas with simulation studies.

Our set-theoretic characterization of the aggregate flexibility of a collection of TCLs using battery

models allows us to naturally treat regulation service provision. Ex ante, it is used to conservatively

represent the set of feasible regulation signals that the aggregator can support. The resulting run-

time control problem to follow the external regulation signal r becomes extremely simple. There is

no need to account for the dynamics of the TCL population.

2.1.2 Related Work

Early work showing potential of TCLs for mitigating the variability from renewables may be found

in [58]. Here, the author shows that the aggregate power consumption of a collection of TCLs can

be made to follow a high-frequency signal such as the power output of a wind-farm.

There is a substantial body of work on models for TCLs and TCL aggregations [59–64]. These

models fall along a spectrum of complexity and fidelity, and have been used for a variety of simu-

lations, control design, and validation efforts. There are some papers that propose battery models

to treat the aggregate flexibility for a collection of TCLs, see for example [65]. These papers do

not qualify their battery models as approximations, nor do they attempt to quantify the quality

of the approximation. The battery models derived usually do not include a dissipation term and

therefore understate the aggregate flexibility of TCL collections. To the best of our knowledge, our

set-theoretic characterization of aggregate flexibility together with quantifying the associated error

using generalized battery models is new. Temperature-based and/or time-based priority control

methods that are closely related or identical to this work were developed in [63, 66, 67].

Another class of models commonly used to study aggregations of TCLs are population-bin transition

models, for example [63, 65]. These control-oriented models are often high order (depending on

the number of bins), linear Ordinary Differential Equations (ODEs). These researchers then study

regulation as a control system design problem with this model. There are three difficulties with

population bin models: (a) they are complex, not universal portable, (b) they do not easily handle

participation effects (i.e. modifying the model to account for individual TCLs coming on line
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or dropping out), (c) they require much more complex control strategies that take into account

population dynamics.

While there is considerable literature on indirect load control through price proxies [68, 69], it

is our view that these schemes are less reliable, as resource availability and tracking accuracy of

a dispatch signal are not guaranteed [70]. Moreover, with large scale deployment of price-based

demand response programs, power system stability becomes a serious concern [71].

2.1.3 Individual TCL Models

2.1.3.1 Dead-Band Model

We first present a standard hybrid-system model for a TCL. We will use this model for our simulation

studies. In this model, the temperature evolution of a TCL is described as

θ̇(t) =

−a(θ(t)− θa)− bPm + w, if q(t) = 1,

−a(θ(t)− θa) + w, if q(t) = 0.
(2.1)

The state of the unit is captured by the binary signal q(t). We say the unit is in the ON state at

time t if q(t) = 1, and in the OFF state if q(t) = 0. The unit cycles between ON and OFF states

when the temperature crosses user-specified temperature thresholds:

lim
ε→0

q(t+ ε) =

q(t), |θ(t)− θr| < ∆,

1− q(t), |θ(t)− θr| ≥ ∆.

Here, ∆ is the dead-band, θr is the set-point, and the process noise w accounts for disturbances.

The constants

a =
1

RthCth
, b =

η

Cth
,

can be expressed in terms of the thermal resistance Rth, thermal capacitance Cth, and coefficient of

performance η. See [58, 59, 63] for more details on the model. The rated power Pm is positive for

cooling devices, and it is negative for heating devices. Table 2.1 describes the parameters and their

typical values for a residential AC [72]. This simple first-order hybrid model is an approximation.

The cooling dynamics of west facing houses with exposed attic spaces require higher order models.

A detailed and explicit treatment of modeling uncertainty in (2.1) is outside the scope of this work.
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Table 2.1: Typical parameter values for a residential AC unit.

Parameter Description Value Unit

Cth thermal capacitance 2 kWh/◦C

Rth thermal resistance 2 ◦C/kW

Pm rated electrical power 5.6 kW

η coefficient of performance 2.5

θr temperature setpoint 22.5 ◦C

∆ temperature deadband 0.3 ◦C

The average power consumed by a TCL over a cycle is

Pa =
PmTON

TON + TOFF
, (2.2)

where TON is the ON state duration, and TOFF is the OFF state duration per cycle. It is straight-

forward to show that

TON = RthCth ln
θr + ∆− θa +RthPmη

θr −∆− θa +RthPmη
,

TOFF = RthCth ln
θr −∆− θa
θr + ∆− θa

.

2.1.3.2 Continuous Power Model

As a more convenient abstraction of the dead-band model, we consider a continuous thermal model.

We will use this approximate model for all our analytical work. Here, the TCL accepts any contin-

uous power input p(t) ∈ [0, Pm] and the dynamics are:

θ̇(t) = −a(θ(t)− θa)− bp(t). (2.3)

Note that in this model, as common in the literature, the disturbance w is assumed to be zero

mean [58, 59]. If w has non-zero mean, it could be treated by an appropriate change to θa.

Maintaining the temperature θ(t) within the user-specified dead-band θr ±∆ is treated implicitly

as a constraint on the power signal p(t). When evaluating the trajectory θ(t) of this continuous

model, it is assumed that θ(0) = θr. The parameters that specify this continuous power model are

χ = (a, b, θa, θr,∆, Pm).

The nominal power required to keep a TCL at its set-point is given by

Po =
a(θa − θr)

b
=
θa − θr
ηRth

. (2.4)



Chapter 2. Modeling Demand-Side Flexibility 12

Simple calculations with typical parameters reveal that the nominal power Po under the continuous

power model closely follows the average power Pa under the dead-band model (as in (2.2) for a

wide range of operating conditions.

It can be shown that the continuous model is asymptotically exact for a collection of homogeneous

TCLs represented by the hybrid model. More precisely, a load trajectory that is feasible for one is

feasible for the other within a constant tolerance that decreases with the size of the collection plus

a time varying tolerance that decreases to zero at least as fast as the time constant a of the TCLs.

The fact that the feasible load trajectory for the collection with the hybrid model is feasible (in sum)

for the continuous model follows simply by linearity. In this case, the variable θ for the continuous

model is exactly the average temperature of the homogeneous TCL collection. The reverse is true

because a feasible trajectory for the continuous model can be divided among a collection of hybrid

units in such a way as to drive the temperatures of the hybrid units to asymptotically approach the

temperature of the continuous model, and in the worst case the convergence is bounded by a term

proportional to e−at. For a collection of heterogeneous TCLs, we can cluster them into groups so

that TCLs in each group have similar parameters. Each of these groups with the hybrid model can

be approximated by that with the continuous model.

2.2 Deferrable Loads

In this section, we develop and analyze real-time scheduling algorithms for coordinated aggregation

of deferrable loads and storage. These distributed resources offer flexibility that can enable the

integration of renewable generation by reducing reserve costs. In the next chapter, we then present

three scheduling policies: earliest deadline first (EDF), least laxity first (LLF), and receding horizon

control (RHC).

2.2.1 Introduction

Motivated by a combination of environmental, energy security, and economic concerns, many coun-

tries have committed to substantially increasing the use of clean, renewable energy resources. This

presents serious challenges to existing grid operations. Renewable sources of energy are intermittent,

non-dispatchable, and uncertain. To achieve deep penetrations of renewable energy, grid operations

must economically address the variability associated with renewable generation.

The current operating paradigm is to absorb this variability in operating reserves. This approach

works at modest penetration levels, but fails when 30% or more of total energy generation comes
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from renewables. A recent study indicates that California will require increases in maximum spring

time load-following down-reserve capacity from 3,275 MW to 5,283 MW in order to meet its 33%

renewable energy penetration target [103]. The California Independent System Operator (CAISO)

forecasts comparable increases in various other reserve metrics [104]. These increases in reserves

are economically untenable and defeat the environmental benefit of renewables.

Much of this renewable generation is being deployed at the distribution level with rooftop solar

photovoltaics (PVs) and small-scale wind farms [88, 89]. Distributed generation along with small-

scale storage, deferrable loads, and advanced power electronics are examples of distributed energy

resources (DERs). Recent years have witnessed increased deployment of these distribution level

assets [105, 106]. These assets offer a range of benefits for power system operation such as (a)

relieving transmission and distribution network congestion, (b) improving system reliability, and

(c) mitigating renewable variability. Coordinated aggregation refers to the intelligent control of

DERs and offers the promise of effectively mitigating the increased reserve costs of deep renewable

penetration.

Coordinated aggregation schemes broadly fall into two classes: (a) indirect load control (ILC) where

DERs respond, in real-time, to price proxy signals that induce desired behavior, and (b) direct load

control (DLC) where DERs cede physical control of devices to operators who determine appropriate

actions. In both cases, the central problem is management of a resource cluster – a networked

collection of DERs. In DLC, a Cluster Manager (CM) coordinates operation of the various assets

present in a resource cluster. The CM participates in ex-ante markets to procure generation to

meet load requirements, performs resource scheduling in real-time, and presents the capabilities

of all managed DER assets to the system operator as a dispatchable resource. This hierarchical

architecture is necessary as system-wide aggregation of DERs involves prohibitive communication

costs [100], and falls outside the scope of system operator business models.

In this section and also in the next chapter, we focus on the CM’s real-time scheduling function

and analyze its impact on operating reserves. In this context, operating reserves refers to load-

following reserves, procured in real-time energy markets, and regulation reserves on time scales of

a few minutes. In particular, this does not include any contingency or ramping reserves dispatched

in response to rare and severe events. Our contributions are as follows. We develop two resource

scheduling algorithms (inspired by processor time allocation) – earliest deadline first (EDF) and

least laxity first (LLF). We then formulate a receding horizon control (RHC) scheduling algorithm

that explicitly accounts for operating reserve costs. We then present simulation studies to assess the

performance of these resource scheduling policies in the metrics of reserve energy and capacity costs.

We quantify the marginal benefits of deferrable load penetration and of load scheduling flexibility.
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We conclude that resource scheduling under any algorithm offers compelling reserve energy cost

reductions while RHC-based scheduling also offers significant reserve capacity cost reductions. We

conclude that, while reserve cost reductions offered by coordinated aggregation depend on the

statistical nature of the renewable generation process, the majority of these benefits can be realized

with modest levels of deferrable load penetration and load deferrability.

The development and analysis of coordinated aggregation schemes is an active research area. Recent

studies have developed algorithms [112], and quantified the numerous operational benefits [107]

afforded by ILC. There have also been studies focused on the economic efficiency [108, 110] and

stability of price signals [111], as well as the practical issues associated with implementing ILC

programs [109]. Current research in DLC focuses on developing and analyzing algorithms for

coordinated aggregation [96, 113, 114, 118]. For example, [116] develops a distributed scheduling

protocol for electric vehicle charging; [115] uses approximate dynamic programming to couple wind

generation with deferrable loads; and [98–100] suggest the use of RHC approaches for resource

scheduling. Our contribution is not in suggesting the usage of RHC control strategies, but rather

in the development of specific cost functions which explicitly minimize operating reserve costs.

2.2.2 Problem Formulation

Consider the problem of balancing a cluster’s power generation and load over the operating window

[0, T ]. We assume this balancing occurs N times within this window at times indexed by k ∈
{1, 2, . . . , N}. At each time k, the CM performs two functions. First, the CM allocates surplus

available generation after meeting static load requirements to deferrable loads and storage. This

is called resource scheduling. Second, the CM determines the amount of reserves required (rk) to

meet load requirements. As we ignore the impact of rare and severe events, all energy imbalances

are managed using operating reserves. This amount of operating reserves is determined at each

time k and is constant for a time interval ∆t = T
N until the next opportunity to balance load and

generation. This is called reserve scheduling.

2.2.3 Generation Modeling

We assume the CM procures generation to meet load requirements from three sources: (a) inex-

pensive renewables within its cluster, (b) bulk power purchased in conventional electricity markets,

and (c) operating reserves.
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2.2.3.1 Renewable generation (wk)

Renewable generation (wk) is drawn from sources (ex: rooftop PV) within the CM’s resource

cluster. We assume this generation is free (zero marginal cost) but exhibits significant variability.

The CM accepts all power generated by renewable sources of energy within its resource cluster. Let

w = {wk}Nk=1 denote the realized sequence of renewable generation in the operating interval.

2.2.3.2 Bulk power (Bk)

Bulk power (Bk) is acquired from the bulk transmission system contracted ex-ante in a forward

market. For each hour-long interval, the CM receives a constant amount of power. There is no

uncertainty associated with bulk power delivery. Let B = {Bk}Nk=1 denote the sequence of bulk

power procurements. We assume B is constant over hour-long intervals and separate amounts of

bulk power are purchased for each such interval within the operating window.

2.2.3.3 Reserve generation (rk)

Reserve generation (rk) is dispatched to ensure load requirements of the resource cluster are met

at each balancing time k. Reserve generation can be positive (up regulation) or negative (down

regulation). Let r = {rk}Nk=1 refer to the sequence of reserve dispatch decisions made during the

operating interval.

There are two cost components associated with reserve generation: energy and capacity. We assume

the CM pays a price pr ($/MWhr) for each unit of reserves (up or down) dispatched to perform

load balancing (energy cost) and a price pC ($/MW) for the maximum reserves dispatched at any

balancing time (capacity cost). Our results can be generalized to the case of asymmetric reserve

costs.

2.2.4 Resource Modeling

A CM’s resource cluster will contain heterogeneous loads. These may include: (a) power on-demand

loads which offer no scheduling flexibility, (b) deferrable loads such as plug-in electric vehicles (EVs)

and thermostatically controlled loads (TCLs), and (c) distributed electricity storage. Detailed

modeling of loads to varying degrees of fidelity is an active research area [85, 86]. There are three

kinds of loads:
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2.2.4.1 Static Loads

Static Loads have no flexibility associated with their admissible power profile. The CM must

ensure that adequate generation is present to meet this load requirement at each time k within the

operating interval [0, T ]. We model the aggregate power requirement of all static loads as a power

profile lS = {lSk }Nk=1 that must be satisfied at each balancing time k.

2.2.4.2 Deferrable Loads

Deferrable Loads require a certain energy be delivered over a specified time interval. The energy

needs of deferrable loads can be modeled as tasks.

Definition 2.1. A task Ti is characterized by a service interval {ai, . . . , di}(⊆ {1, . . . , N}) over

which a quantity of energy Ei must be delivered with a maximum power transfer rate mi. Let pik

be the power delivered to task Ti at time k. The task requirement can be expressed as:

di∑
k=ai

pik∆t = Ei , 0 ≤ pik ≤ mi ∀k ∈ {ai, . . . , di} (2.5)

Each task Ti is parametrized by (Ei,mi, ai, di). This parametrization succinctly captures the degree

of flexibility present in deferrable loads. For instance, Ei, in the case of an EV, corresponds to a

user-specified battery state-of-charge desired at the end of the service interval [ai, di], and mi is a

power transfer rate limit imposed by the charging equipment or other power delivery constraints.

We make the following assumptions:

A1 Tasks are preemptive, i.e., they can be serviced with interruptions,

A2 The power consumed by a task Ti (pik) admits values on the continuous interval [0,mi].

While the ability to continuously modulate power delivery to each deferrable load (Assumption

A2) may not be entirely accurate, it reasonably approximates reality. Crucially, it enables the

computation of power allocation schedules using convex optimization methods. For practical im-

plementations of such algorithms, we propose setting pik to the nearest discretized power level.

We now introduce some key definitions.
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Definition 2.2. Consider a task Ti parametrized by (Ei,mi, ai, di). Let pik be the power delivered

to task Ti at time k. The energy state of task Ti at time k is:

eik = Ei −
k∑

n=ai

pin∆t. (2.6)

The energy state of a task at time k is the remaining energy requirement for the task at the end of

the kth time-step.

Definition 2.3. A task Ti is active at time k if ai ≤ k ≤ di and eik > 0. For a collection of tasks

T = {Ti}MT
i=1, with Ti parametrized as (Ei,mi, ai, di), the set of active tasks at time k is written Ak.

Equivalently, a task is active at time k if it can and needs to be serviced at that time.

2.2.4.3 Storage

We model electricity storage as devices.

Definition 2.4. A device Dj is characterized by maximum (E+
j ) and minimum (E−j ) energy ca-

pacities, and maximum charging (m+
j ) and discharging (−m−j ) power transfer rates. Let pjk be the

power delivered to device Dj . Device requirements can then be expressed as:

E−j ≤
k∑

n=1

pjn∆t ≤ E+
j , −m

−
j ≤ pjk ≤ m

+
j ∀k (2.7)

The maximum and minimum energy capacities can be readily calculated from the total storage

capacity and initial energy level of the device. Thus, each device Dj can be parametrized by

(E−j , E
+
j ,m

−
j ,m

+
j ). We remark that, unlike tasks, devices are always active. The set of all devices

present during the operating window is D = {Dj}MD
j=1.

Tasks and devices are distinguished by their energy requirements. The energy requirement for a

task is expressed as a single equality constraint; the corresponding requirement for a device is a set

of 2N linear inequality constraints.

2.2.5 Scheduling Policies

The CM must meet all load requirements over the operating window. Accordingly, the CM first

assigns procured generation (renewables and bulk power) to meet static load requirements. The
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remaining generation, which is used to satisfy deferrable load requirements, is called available

generation.

Definition 2.5. Available generation to meet deferrable load requirements, g = {gk}Nk=1, is the

bulk and renewable power remaining after satisfying static load requirements.

gk = wk +Bk − lSk , ∀k. (2.8)

Scheduling policies determine allocations of available generation to deferrable loads and storage.

Definition 2.6. A scheduling policy σ is an algorithm that computes reserves, and allocations of

available generation and reserves, to satisfy the requirements of all tasks over the operating window.

Specifically, for a collection T of tasks, and D of devices, the scheduling policy is:

σ(g,T,D) = (r, {pk}Nk=1), (2.9)

where pk is the set of power allocations at time k to all active tasks {pik}i∈Ak , and devices {pjk}j∈D.

Clearly, balancing of generation and load results in:

gk + rk =
∑
i∈Ak

pik +
∑
j∈D

pjk. (2.10)

A scheduling policy σ is causal if its allocations at time k depend only on the information state Ik
at time k.

Definition 2.7. The information state Ik at time k consists of:

(a) Task parameters of tasks active at time k: (Ei,mi, ai, di) ∀i ∈ Ak,

(b) Device parameters of all devices:
(
E−j , E

+
j ,m

−
j ,m

+
j

)
∀j ∈ D,

(c) Energy states of tasks active at time k: eik ∀i ∈ Ak,

(d) Realized values of available generation: {gn}kn=1.

2.2.6 Performance Metric

The performance metric used to assess the performance of different scheduling policies is the cost

of procuring reserve generation (r) to meet load requirements. As mentioned earlier, there are two

components to this cost:
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J(r) = pr

N∑
k=1

|rk|∆t + pC max
k
|rk| (2.11)

The first term penalizes the total amount of reserve generation procured to meet load require-

ments. The second term captures the non-energy costs associated with making generators that

provide reserve generation available. In practice, such reserve capacity is procured either through

bilateral contracts, where the CM enters into long-term agreements with select generating facilities,

or through the clearing of ex-ante capacity markets [87]. The prices pr and pC negotiate the relative

importance of the cost components. As our primary focus is in quantifying the impact of the CM’s

real-time scheduling function on reserve costs, we do not consider the procurement costs associated

with bulk power in our analysis.

2.2.7 Policy Optimization Problem

Our objective is to develop scheduling policies that reduce reserve costs as captured by the metric

(2.11). This can be written as a functional optimization problem (2.12) over the function space of

possible scheduling policies. Task and device constraints limit the feasible region of this function

space.

min
σ

J(r) subject to: (2.12)

({pk}Nk=1, r) = σ(g,T,D) (a)

∀k, gk + rk =
∑
i∈Ak

pik +
∑
j∈D

pjk, (b)

∀i ∈ T,
∑di

k=ai
pik∆t = Ei,

0 ≤ pik ≤ mi ∀k ∈ {ai, . . . , di},
(c)

∀j ∈ D,
E−j ≤

∑k
n=1 pjn∆t ≤ E+

j ,

−m−j ≤ pjk ≤ m
+
j ∀k ∈ {1, . . . , N}.

(d)

We seek causal scheduling policies. Specifically, we want to solve a modified version of the optimiza-

tion problem (2.12) where we constrain the policy to make decisions solely based on the current

information state. We achieve this by replacing the constraint (2.12-a) with (pk, rk) = σ(Ik), ∀k.

Theorem 2.8. The optimal scheduling policy that solves (2.12) is not causal.
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Table 2.2: Interpretation of parameters φ.

parameter meaning

n−, n+ charge/discharge power limits

C energy capacity

α dissipation rate

Proof: This is a straightforward extension of the adversarial argument we used to show [90, Theorem

1] and is omitted. �

This result forces us to be content with causal but necessarily sub-optimal heuristics for resource

scheduling.

2.3 Generalized Battery Models of Aggregate Flexibility

Generalized battery models offer a compact representation for a set of power signals. These models

will prove useful to represent the aggregate flexibility of a collection of loads.

Definition 2.9. A Generalized Battery Model B is a set of signals u(t) that satisfy

−n− ≤ u(t) ≤ n+, ∀ t > 0,

ẋ = −αx− u, x(0) = 0 ⇒ |x(t)| ≤ C, ∀ t > 0.

The model is specified by the non-negative parameters φ = (C, n−, n+, α), and we write this com-

pactly as B(φ).

Remark 2.10. If we regard u(t) as the power drawn from the battery and x(t) as its state-of-charge

at time t, the parameters φ have natural interpretations as summarized in Table 2.2. For this

reason, we view B as a generalized electricity storage. We refer to the charge/discharge rate limits

n−, n+ as the power limits and C as the energy capacity of the battery. It will happen that the

parameters φ are random processes that depend on ambient temperature and participation rates.

As a result, we regard B(φ) as a stochastic battery. 2

While the state-of-charge is defined to be bounded by C, it may be more severely constrained by

the bounds on power signal u(t). This observation motivates the following:

Definition 2.11. The effective up and down energy capacities C+ and C− of the stochastic battery

model B(φ) are defined as

C+ = min{C, n+/α}, C− = min{C, n−/α}.
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Consider a diverse collection of TCLs indexed by k. Let P ko denote the nominal power consumed

by the kth TCL. Each TCL can accept perturbations ek(t) around its nominal power consumption

that will meet user-specified comfort bounds. Define

Ek =

ek(t)∣∣∣ 0 ≤ P ko + ek(t) ≤ P km,

P ko + ek(t) keeps |θk(t)− θkr | ≤ ∆k

 . (2.13)

This set of power signals represents the flexibility of the kth TCL with respect to nominal. The

aggregate flexibility of the collection of TCLs is defined as the Minkowski sum

U =
∑
k

Ek. (2.14)

The geometry of this set is, in general, unwieldy. Our objective is to develop succinct characteri-

zations of the aggregate flexibility set. In our central result, we show that U can be bounded by

generalized battery models as

B(φ1) ⊆ U ⊆ B(φ2).

We have the following:

Theorem 2.12. Consider a collection of heterogeneous TCLs modeled by the continuous-power

model with parameters χk. The aggregate flexibility U of the collection satisfies

U ⊆ B(φ2),

where the parameters φ2 = (C, n−, n+, α) are given by

C =
∑
k

(
1 +

∣∣∣∣1− ak

α

∣∣∣∣) ∆k

bk
,

n− =
∑
k

P ko , n+ =
∑
k

P km − P ko ,

where P ko = ak(θka − θkr )/bk and α > 0 is arbitrary.

Proof: See Appendix A. �

We next examine sufficient characterizations of U. There are many choices of battery parameters

φ such that B(φ) ⊆ U. We have the following:
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Theorem 2.13. Consider a collection of heterogeneous TCLs modeled by the continuous-power

model with parameters χk. Fix α > 0, and define

fk =
∆k

bk
(

1 +
∣∣∣α−akak

∣∣∣) .
Fix βk ≥ 0, k = 1, . . . , N, with

∑
k β

k = 1. Let (C, n−, n+) be any triple that satisfies the constraints

βkn− ≤ P ko

βkn+ ≤ P km − P ko
βkC ≤ fk

 . (2.15)

Then, the aggregate flexibility U of the collection satisfies

B(φ1) ⊆ U,

where φ1 = (C, n−, n+, α).

Further, if u ∈ B(φ1), the causal power allocation strategy

ek(t) = βku(t),

satisfies the dead-band constraints |θk(t)− θkr | ≤ ∆k.

Proof: See Appendix A. �

Theorem 2.13 informs us that there are many battery models B(φ1) that offer sufficient charac-

terizations of the aggregate flexibility set U. In some situations we may seek a sufficient battery

model with largest energy capacity C, and in others with largest charge power limit n−, or with

largest discharge power limit n+. Table 2.3 summarizes the three extreme cases: maximize capacity

C, charge rate n−, or discharge rate n+. The results follow from Theorem 2.13 by setting βk as
fk∑
k f

k ,
Pko∑
k P

k
o

and Pkm−Pko∑
k(Pkm−Pko )

, respectively.

Since B(φ1) ⊆ U ⊆ B(φ2), there is, in general, a gap between our necessary and sufficient characteri-

zations of aggregate flexibility. We explore the conservatism in our battery models using simulations

in Section 3.1.3. For a population of homogeneous TCLs, our battery model characterizations are

exact. More precisely, we have:
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Table 2.3: Comparison of generalized battery models for a collection of heterogeneous TCLs

(Necessary) Battery B(φ2) (Sufficient) Battery B(φ1)

Maximize C Maximize n− Maximize n+

C
∑
k(1 + |1− ak

α
|) ∆k

bk

∑
k f

k (
∑
k P

k
o ) mink

fk

Pk
o

(
∑
k P

k
m − Pko ) mink

fk

Pk
m−Pk

o

n−
∑
k P

k
o (

∑
k f

k) mink
Pk
o

fk

∑
k P

k
o (

∑
k P

k
m − Pko ) mink

Pk
o

Pk
m−Pk

o

n+
∑
k P

k
m − Pko (

∑
k f

k) mink
Pk
m−Pk

o

fk
(
∑
k P

k
o ) mink

Pk
m−Pk

o

Pk
o

∑
k P

k
m − Pko

Corollary 2.14. Consider a collection of N homogeneous TCLs, modeled by the continuous-power

model with parameters χ = (a, b, θa, θr,∆, Pm). Then,

U = B(C, n−, n+, α),

where

C = N∆/b, n− = NPo, n+ = N(Pm − Po), α = a,

and Po = a(θa − θr)/b.

Proof: Follows immediately from Theorems 2.12 and 2.13 by setting α = ak. �

Remark 2.15. The gap between the battery models B(φ2) and B(φ1) increases with TCL hetero-

geneity. To obtain tighter models, we can cluster TCLs with similar parameters into g groups, and

compute a battery model for each group. The aggregate flexibility is then represented as the union

of g generalized battery models. Theorem 2.13 guides the choice of metric for clustering TCLs. 2
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Controlling Demand-Side Flexibility

In this chapter, we then describe a direct load control architecture for regulation service provision

where we use a priority-stack-based control framework to select which TCLs to control at any time.

The control objective is for the aggregate power deviation from baseline to track an automatic

generation control signal supplied by the system operator. Simulation studies suggest the practical

promise of our methods.

3.1 Thermostatically Controlled Loads

Our objective is to reliably deliver frequency regulation service to the grid by actively controlling

an aggregation of TCLs. The regulation signal or AGC command r(t) is typically a command

determined by the system operator at 4-second sampling based on the area control error [49].

We adopt a centralized control architecture. This choice is dictated by the reliability requirements

necessary to participate in regulation ancillary service markets. At each sample time, the aggregator

compares the regulation signal r(t) with the aggregate power deviation δ(t) = Pagg(t) − n(t).

Here Pagg(t) =
∑

k q
k(t)P km is the instantaneous power drawn by the TCLs, and n(t) =

∑
k P

k
o is

their baseline power. This requires a contractual ex ante agreement on what the “baseline” power

consumption n(t) of the aggregation will be on the forward delivery window.

If r(t) < δ(t), the population of TCLs needs to “discharge” power to the grid, which means some

of the ON units will be turned OFF. Conversely, if r(t) > δ(t), then the population of TCLs must

consume more power. This requires turning ON some of the OFF units. The selection of the most

appropriate TCLs that must be turned ON or OFF is done through a priority-stack-based control

strategy which will be described in the next section. We stress that this is a feedback control strategy

24
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which offers robustness against disturbances w due to occupancy patterns, solar radiation, etc. and

modeling errors in the dynamics of the TCLs. The overall control architecture is depicted in Fig.

3.1.

3.1.1 Priority Stack Scheduling

Suppose at time t we have r(t) < δ(t). The population of TCLs must reduce their power consump-

tion. We must therefore turn OFF some units that are ON. It is most appropriate to turn OFF

those units that will most imminently turn OFF. Imminence can be measured naturally by tem-

perature distance to the switching boundary, i.e. by πk(t) = (θk(t)− θk)/∆k, where θk = θkr −∆k.

The temperature distance is normalized to account for heterogeneity. We can therefore construct

the ON priority stack which consists of units that are ON. The TCLs in this stack are ordered by

their priority criterion, πk(t). Analogously, we construct the OFF priority stack of units that are

OFF, ordered by πk(t) = (θ
k − θk(t))/∆k, where θ

k
= θkr + ∆k.

Imminence can also be measured by time to the switching boundary. For example, in the ON

priority stack, units that will turn OFF autonomously the soonest receive the highest priority.

The unit with the highest priority will be turned ON (or OFF) first, and then units with lower

priorities will be considered in sequence until the desired regulation is achieved. This priority-

stack-based control strategy minimizes the ON/OFF switching action for each unit, which avoids

short-cycling and reduces wear and tear of the mechanical equipment. Priority stacks are illustrated

in Fig. 3.2. We index the units available for manipulation in the ON stack from bottom to top by

{1, 2, · · · , N1}, and the units available for manipulation in the OFF stack from top to bottom by

Collection
of TCLs

Priority Stack
Controller

Baseline
Power n(t)

System Operator
AGC Command r(t)

Power Deviation δ(t)

+−

Aggregate
Power Pagg(t)

−+

Figure 3.1: Control architecture for regulation service provisoin.
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{1, 2, · · · , N0}. Units are turned ON or OFF when their real time power consumption P k(t) matches

the difference between the regulation signal r(t) and aggregate power deviation δ(t). The associated

control algorithm is summarized in Algorithm 1.

Algorithm 1 Priority-stack-based control algorithm
loop

receive πk(t) and P k(t);
construct priority stacks;
read r(t);
compute δ(t) = Pagg(t)− n(t);
if δ(t) < r(t) then

find j∗ = min
{
j |
∑j

i=1 P
i(t) ≥ r(t)− δ(t)

}
;

turn ON units indexed by {1, 2, · · · , j∗}.
else if δ(t) > r(t) then

find j∗ = min
{
j |
∑j

i=1 P
i(t) ≥ δ(t)− r(t)

}
;

turn OFF units indexed by {1, 2, · · · , j∗}.
end if

end loop

Remark 3.1. The priority-stack-based control offers a generic architecture suitable for direct load

control of various classes of flexible loads. For example, common scheduling strategies for electric

Hot

Cold

Hot

Cold

ON Stack

Sorted by θk(t)−θk
∆k

OFF Stack

Sorted by θ
k−θk(t)

∆k

turn on

co
o
l
d
o
w
n

turn off

w
a
rm

u
p

Figure 3.2: The ON and OFF priority stacks. The stacks are sorted by temperature distance.
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vehicle fleet such as Earliest-Deadline-First define a priority stack [73]. Priorities can also be used

to encode pricing and service quality: consumers who wish to exercise greater control over their

loads could opt to receive low compensation when called to supply regulation services in exchange

for a lower priority position.

3.1.2 Practical Considerations

To implement the proposed direct load control strategy, we require (at a minimum) measurements

of power P k(t) and temperature θk(t) at a sampling rate of 0.25 Hz for each TCL. While θk(t)

and the set-point θkr are directly available from the thermostat, measuring the power P k(t) requires

additional hardware infrastructure. For each TCL, run-time system identification algorithms can

be used to estimate the operating state qk(t), the ambient temperature θka , and model parameters

ak, bk,∆k from the temperature time series θk(s), s ≤ t. Using this information, a local embedded

controller computes πk(t) for each TCL.

The priority criterion πk(t) and power consumption P k(t) are transmitted to the aggregator. The

aggregator forms the priority stack from the collated data and computes the control action for

the next sample. This is broadcast to the TCLs where the local controller implements the action.

Latency in the control loop will determine the quality of the offered regulation service in terms of

power ramp rates. This scheme has modest computation and communication overhead.

Remark 3.2. Measuring the power consumption of each TCL necessitates nontrivial capital cost

as power meters are expensive. In our view, this is unavoidable. Alternate and realistic schemes,

Scenarios 1 and 2 of [63], have been proposed that use population-bin models and requires measuring

only the TCL ON/OFF state. This requires moderately simpler sensing infrastructure, but requires

a more complex control strategy. Other schemes have been proposed where the aggregate power

Pagg(t) is estimated using population models [64], or disaggregated from substation measurements

[58], and Scenarios 3 and 4 of [63]. The former scheme is open-loop in character. The latter schemes

must contend with the fact that participating TCLs represent a small fraction of the connected

loads at a substation, making it very difficult to infer their power consumption from an aggregate

measurement. These schemes therefore face big challenges in meeting the reliability requirements

necessary to participate in the regulation ancillary service market [74].

Remark 3.3. Our scheme (as well as Scenarios 1 and 2 of [63]) requires real-time telemetry to trans-

mit power measurements to the aggregator. This requires very little bandwidth and is becoming

increasingly inexpensive. Since telemetry costs are dominated by sensing infrastructure costs, trans-

mission represents a minor expense. Real-time telemetry is not always needed when a conventional

generator resource is providing regulation. The key difference is that with TCLs we have distributed
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Table 3.1: Power limits and energy capacities.

Sufficient Battery B(φ1) Necessary Battery B(φ2)

n− 1.9 MW 1.9 MW

n+ 2.8 MW 3.7 MW

C 0.19 MWh 0.26 MWh

resources. Telemetry is needed to close the loop, i.e. send measurements to the controller which is

implemented by the remote aggregator. For generators, the control is local: sensing and actuation

are at the same place, so real-time telemetry may not be needed.

3.1.3 Simulation Studies

We consider a population of 1000 diverse ACs. In our simulations, we use the more accurate

hybrid model (2.1) for each TCL. The nominal model parameters are listed in Table 2.1. For a

heterogeneous collection, we assume that the TCL parameters are drawn from a uniform distribution

with 10% heterogeneity around their nominal values. For example, Rkth ∼ U(0.95Ro, 1.05Ro) where

Ro is the nominal value of the thermal resistance. The ambient temperature is assumed to be 32◦C,

and the initial temperatures and operating states of the population of TCLs are randomized.

The power limits and energy capacities of the collection of TCLs using the (necessary) battery

model B(φ2) and the (sufficient) battery model B(φ1) are listed in Table 3.1. In both models, the

dissipation parameter α is given as the average of the time constants of individual TCLs. Formally,

we assume α := 1
N

∑N
k=1 1/(RkthC

k
th). For the sufficient battery model, we maximize the charge rate

n− (the fourth column in Table 2.3). Note that the battery parameters are derived based on the

continuous power model (2.3).

We apply our priority-stack-based control strategy to track a one-hour long regulation signal r(t)

from PJM (Pennsylvania-New Jersey-Maryland Interconnection) [75]. The magnitude of the PJM

signal is scaled appropriately to match the power limits and energy capacity of 1000 ACs.

3.1.4 Tracking Performance

Fig. 3.3 shows that if the regulation signal r(t) has both power and capacity requirements within the

analytic bounds of the (sufficient) battery model B(φ1), the population of TCLs delivers excellent

tracking. The maximum tracking error is less than 1% of the maximum magnitude of the regulation

signal. Additional simulation results (not reported here) reveal that even with one sample (4 sec)

communication delay, good tracking is still achieved with a maximum tracking error less than 5% of
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Figure 3.3: Tracking of a regulation signal succeeds when it is within the power limits and energy
capacity of the (sufficient) battery model B(φ1).

the maximum magnitude of the regulation signal. If the regulation signal violates either the power

limits or energy capacity of the (necessary) battery model B(φ2), the population of TCLs fails to

track the regulation signal. Figs. 3.4 and 3.5 show that when the regulation signal exceeds the

power limits or the energy capacity respectively, we cannot track the regulation signal. Extensive

simulations (not reported here) using other regulation signals yield similar conclusions.

We use a typical 6-hour long regulation signal from PJM (shown in Fig. 3.6 (a)) that is fairly close

to the power limits and energy capacity to test the prediction performance of our sufficient battery

model. Specifically, we examine the effect of tracking of a regulation signal that (just) satisfies
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Figure 3.4: Tracking of a regulation signal fails when it exceeds the power limit of the (necessary)
battery model B(φ2).

the sufficient battery model on the number of additional ON/OFF switchings that occur above

nominal, and occurrence of short cycling events. Table 3.2 shows the performance statistics. The

average number of ON/OFF switching in the 6-hour period without providing regulation service

(nominal) is 30 times, while the average switching in the same period with regulation using the

priority-stack controller is 65 times, or about twice of the nominal value. Additionally, we assume

for each unit, its minimum ON-time and OFF-time are 1 minute. With provision of frequency

regulation, the minimum, average, and maximum number of short cycling events among all units

in the 6-hour period are respectively 0, 1.1, and 8. Extensive simulations using other regulation

signals are also conducted, and similar statistics are obtained. We observe that the number of short
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Figure 3.5: Tracking of a regulation signal fails when it exceeds the energy capacity of the
(necessary) battery model B(φ2).

cycling events is relatively small, and would be drastically reduced with a less aggressive regulation

signal. Note also that short cycling events are closely connected to large, high frequency oscillations

in the regulation signal, and an exact characterization of feasibility with a short cycling constraint

is reported in [76].

3.1.5 Battery Model Conservatism

Recall that the gap between the necessary and sufficient battery models is due to heterogeneity

in the collection of TCLs (see Corollary 2.14). We synthetically vary the diversity d in the TCL

parameters from 1% to 40%. In each case, we then scale the AGC signal r(t) until our control
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Figure 3.6: Tracking of a typical 6-hour regulation signal from PJM that is within the power
limits and energy capacity of the (sufficient) battery model B(φ1).

system fails to provide tracking on a 1-hour window. More precisely, we numerically compute (for

each d),

max γ : tracking error ≤ 1% for AGC command γr(t)

We declare the “true” battery power limits and energy capacity to be

ntrue
− = −γmin

t
r(t), ntrue

+ = γmax
t
r(t),

Ctrue = max |x(t)|, ẋ = −αx− γr(t), x(0) = 0.
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Table 3.2: Prediction performance of the sufficient battery model

Switchings Short Cyclings

nominal regulation min mean max

Sufficient Battery 30 65 0 1.1 8
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Figure 3.7: Conservatism in the bounds on energy capacity from the necessary and sufficient
models. The green dots show the “true” energy capacity as calculated numerically. The red bars
extend between the energy capacity bounds given by the sufficient and necessary battery models.

Fig. 3.7 compares the numerical energy capacity to the bounds given by the necessary and sufficient

battery models as a function of diversity d. We note that for d < 10%, the models capture the

aggregate flexibility quite well. Similar plots can be obtained for power limits also.

3.1.6 The Effect of Ambient Temperature

We have assumed that all of the available TCLs participate in offering regulation services. In prac-

tice, for certain types of TCLs such as ACs and heat pumps, participation rates depend strongly

on ambient temperature θa. For ACs, we expect little participation when θa is low, and significant

participation when θa is high. Modeling participation is extremely complex, requires large amounts

of data, and any resulting models will likely have limited predictive power. For purposes of illus-

tration, suppose we synthetically model participation using an inverse tangent function as shown in

Fig. 3.8. This captures the intuitive observation that more people are likely to use their AC units

at higher ambient temperatures. This does not account for occupancy which exhibits daily and
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Figure 3.8: Participation percentage vs. ambient temperature.

hourly patterns. With this participation model, we can compute the sufficient battery parameters

φ1 as a function of ambient temperature. These are shown in Fig. 3.9 for air-conditioning loads.

3.1.7 Conclusions and Future Work

In this work, we illustrated that (a) the generalized battery model provided a succinct and powerful

framework to characterize the aggregate flexibility of a population of TCLs, (b) the power and

capacity bounds derived from the continuous model accurately captured the aggregate flexibility

of TCLs with the hybrid model, and (c) the priority-stack-based control strategy yielded excellent

tracking performance and good robustness.

The enormous potential of TCLs presents a tremendous opportunity for providing regulation service

to the grid. There are several important research issues that must be addressed to realize this

vision. These include: (a) deriving battery models that account for TCL model uncertainty, (b)

an exploration of suitable and low-cost firmware and communication infrastructure to implement

direct-load control, (c) understanding the quality of regulation service provided in terms of latency

and ramp rates, (d) estimating the overall hourly availability of TCLs using historic measurement

data, and (e) developing fair schemes to compensate loads for participating in regulation services.

For a signal x with support [0,∞), we define the standard norms ‖x‖∞ = maxt |x(t)|, t ≥ 0 and

‖x‖1 =
∫∞

0 |x(t)|dt.
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Figure 3.9: Power limits and effective capacities vs. ambient temperature.

3.2 Deferrable Loads

In this section, we first describe two causal heuristics for allocating available generation. We

then develop a policy for procuring and allocating reserve generation called zero-laxity. Finally,

we formulate a receding horizon control (RHC) algorithm inspired by the functional optimization

problem presented in Section 2.2.7.

3.2.1 Earliest-Deadline-First (EDF) Scheduling

Earliest deadline first is a well-known real-time scheduling policy for processor time allocation

(PTA). The objective in PTA is to schedule a collection of computational tasks, on single or multiple
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processors, such that all task deadlines are met. In this context, EDF is known to be an optimal

scheduling policy for a single processor in the following sense: if some scheduling policy can meet

all deadlines of a collection of pre-emptive tasks, then the schedule for those tasks under EDF also

satisfies all deadlines [91]. In addition, Liu and Layland showed that EDF scheduling meets the

deadlines of all periodic tasks as long as total processing requirements do not exceed processor

capacity [92].

The resource scheduling problem considered in this chapter is similar to PTA with available gen-

eration as the analog to processing time. However, there are three primary differences between the

two scheduling problems. First, while total available processing time is constant over an operating

window, its counterpart in resource scheduling, available generation, is variable. Second, resource

scheduling involves task rate limits which constrain power service to particular tasks. Comparable

scheduling constraints do not exist for PTA. Third, available capacity on a processor, at a given

time, is devoted fully to a single task. In comparison, multiple tasks can be scheduled and serviced

using available generation in resource scheduling. As a result, many of the performance guaran-

tees for EDF present in the PTA literature, such as optimality, do not apply to an EDF resource

scheduling policy.

Consider the scheduling problem at a time k where available generation gk is allocated to active

tasks Ak and devices D. The EDF scheduling policy allocates available generation gk to the task

TI with the most imminent deadline, i.e. I = argmini∈Akdi. Available generation gk in excess of

the rate limit for task TI is allocated to the active task with the next imminent deadline. Ties are

broken arbitrarily. This process continues either until all generation gk is expended or all active

tasks are serviced at their rate limits.

The device scheduling component of this algorithm is as follows. If all generation is expended, active

tasks not serviced at their rate limits receive power from energy stored in devices. This process

continues either until all active tasks are serviced at their rate limits or until device constraints

(discharge rate m−j or minimum energy level E−j ) limit any further power service. If all active

tasks are being serviced at their rate limits, excess available generation is allocated to devices D.

This process continues either until all available generation is expended or until device constraints

(charging rate m+
j or maximum energy capacity E+

j ) limit any further service.

3.2.2 Least-Laxity-First (LLF) Scheduling

EDF allocates resources only on the basis of task deadlines. It does not account for task energy

states. Least laxity first (LLF) is another causal scheduling policy that specifically incorporates
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remaining task requirements in allocation decisions.

LLF has also been analyzed as a dynamic scheduling algorithm for PTA [94, 95]. Mok showed that,

similar to EDF, LLF is also an optimal scheduling policy for PTA in the single processor case [93].

Certain studies have also explored the use of an LLF scheduling policy for resource scheduling. For

instance, Chen et al. study the performance of satisfying EV charging needs in a parking garage

through LLF-based scheduling [96].

Definition 3.4. The laxity for each task Ti at time k, φik, is defined as:

φik = (di − k)− eik
mi

(3.1)

Laxity is the difference between the amount of time remaining and minimum time required to satisfy

task requirements. This is a measure of the degree of deferrability in scheduling a task. Tasks with

larger laxities offer greater scheduling flexibility.

Consider the scheduling problem at a time k where available generation gk is allocated to active

tasks Ak and devices D. The LLF scheduling policy allocates available generation gk to the task

TI with the least laxity, i.e. I = argmini∈Akφik. Available generation gk in excess of the rate limit

for task TI is allocated to the active task with the next smallest laxity. Ties are broken arbitrarily.

This process continues either until all generation gk is expended or all active tasks are serviced at

their rate limits. The device scheduling component of LLF is identical to that of EDF described in

Section 3.2.1.

3.2.3 Reserve scheduling: Zero - Laxity

The EDF and LLF policies described above determine allocations of available generation to tasks

and devices. A resource scheduling policy must also make reserve generation procurement deci-

sions and allocate operating reserves to various loads. We use task laxities to develop the reserve

scheduling component for these policies.

A task cannot be completed by its deadline if the minimum time required to satisfy its energy

requirement exceeds the time until deadline. Specifically, a task Ti is infeasible at time k if and

only if φik < 0. The zero-laxity (ZL) policy, a causal heuristic for reserve scheduling, ensures that

no task laxities become negative.

Consider the scheduling problem at time k. The CM first ensures that the static load requirement

at time k is satisfied. If static load exceeds the sum of bulk and renewable generation (gk < 0),
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the CM must procure sufficient reserves to meet static load requirements: rk = −gk. In addition,

for each active task Ti with laxity equal to 0, the CM procures and allocates sufficient reserve

generation to ensure that Ti is serviced - from both available and reserve generation - at its rate

limit mi. No reserves are assigned to devices.

We employ the ZL reserve scheduling policy in conjunction with EDF or LLF for scheduling available

generation. The computation in these algorithms is modest: sorting task deadlines (EDF) or laxities

(LLF).

3.2.4 Receding Horizon Control (RHC)

Receding horizon control (RHC), or model predictive control (MPC), is a widely used and effective

strategy for state and input constrained control problems [97]. RHC involves solving finite horizon

optimization problems successively at each time step to determine appropriate control actions.

In this context, an optimization problem is solved at each time-step k to yield cost-minimizing

generation scheduling allocations over some time horizon {k, . . . , k+H}. These decisions are based

on generation forecasts and information from all active tasks and devices. Tasks are then scheduled

based only on computed allocation decisions for the first time-step k. This process is repeated at

the next time-step k+ 1 with an updated set of active tasks, devices, and generation forecasts on a

future horizon {k + 1, k + 1 + H}. Determining power allocations in this iterative fashion enables

the incorporation of updated task information and more precise generation forecasts.

Consider the optimization problem solved for RHC scheduling at each time-step k. Let the horizon

length H be the number of ∆t time-steps between k and the largest deadline in the set of active

tasks (H = maxi∈Akdi).

Let MT and MD be the number of active tasks and devices respectively. Without loss of generality,

we set k = 1. In addition, let ĝ refer to forecasted values of available generation through the horizon

{ĝ1, ĝ2, . . . , ĝH}. Each optimization problem attempts to meet all tasks requirements by allocating

only forecasted available generation.

3.2.4.1 Decision Variables

(a) G ∈ RMT×H
+ where Git is the amount of available generation assigned to task Ti at time-step

t,

(b) R ∈ RMT×H
+ where Rit is the amount of reserve generation assigned to task Ti at time-step t,
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(c) S ∈ RMD×H where Sjt is the amount of power assigned to device Dj at time-step t.

3.2.4.2 Objective Function

J(G,R, S) = αE

H∑
t=1

( MT∑
i=1

Rit

)
+
(
ĝt −

MT∑
i=1

Git −
MD∑
j=1

Sjt

)

+αC

(
max
t

MT∑
i=1

Rit + max
t

(
ĝt −

MT∑
i=1

Git −
MD∑
j=1

Sjt

))

+
H∑
t=1

∑
i∈At

(N − φit)2 (3.2)

The first and second terms capture up and down reserve energy costs respectively while the third

and fourth terms capture up and down reserve capacity costs respectively. The fifth term in (3.2)

maximizes task laxities at subsequent time-steps within the horizon H. Effectively, this incentivizes

earlier allocations of available generation, and discourages deferral of task energy requirements. The

parameters αE , and αC negotiate the relative importance of the objective function components.

3.2.4.3 RHC Optimization Problem

min
G≥0,R≥0,S

J(G,R, S) subject to:

∀ t,
MT∑
i=1

Git +

MD∑
j=1

Sjt ≤ ĝt (3.3)

∀ i,
di∑
t=1

Git +Rit = Ei (3.4)

∀ t,

 0 ≤ Git +Rit ≤ mi∆t, ∀ i : t ≤ di
Git = 0, Rit = 0, ∀ i : t > di

(3.5)

∀ j, t, E−j ≤
t∑

n=1

Sjn ≤ E+
j (3.6)

∀ j, t, −m−j ≤ Sjt ≤ m+
j (3.7)

φit = di − t−
eit
mi
, eit = Ei −

t∑
n=1

Gin +Rin (3.8)
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3.2.4.4 Constraints

(a) Generation: (3.3) ensures that the sum of all power allocated to tasks and devices cannot

exceed forecasted available generation (ĝt) at any time t. Furthermore, when satisfying tasks

using energy stored in devices, (3.3) guarantees total power delivered to tasks does not exceed

total energy discharged from devices.

(b) Task: Total Energy Requirement : (3.4) ensures each task’s energy requirement (Ei) is met

through allocation of available and reserve generation.

(c) Task: Rate Limits: (3.5) ensures power is only allocated to active tasks. Moreover, the

allocation for a task is non-negative and bounded by the task rate limit (mi).

(d) Device: Capacity : (3.6) enforces maximum (E+
j ) and minimum (E−j ) energy levels on the

device energy state at all times within the horizon.

(e) Device: Rate Limits: (3.7) enforces discharge (−m−i ) and charging (m+
i ) rate limits on allo-

cations to and from devices.

(f) Laxity : (3.8) is used to compute task laxities φik which are present in the objective function.

This optimization problem is a quadratic program (QP) which must be solved at each time-step

k. The computations associated with RHC scheduling are substantial when compared to resource

scheduling under the EDF or LLF policies. However, our simulation studies reveal that RHC

scheduling offers significant reductions in reserve capacity costs.

3.2.5 Simulation Study

We now demonstrate the value of resource scheduling in reserve cost reduction using simulation

studies. All reported results are averaged over 50 test cases. In each of these cases, a CM manages

a resource cluster consisting of significant levels of solar PV generation, static loads, and EVs

as deferrable loads. We implement the scheduling policies described in Section 3.2 to meet load

requirements at 10 minute intervals over a 24 hour window. We quantify algorithm performance in

terms of reserve energy and capacity costs.
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3.2.6 Parameters

3.2.6.1 Load

The load is comprised of two components: static and deferrable. Static load profiles are created

from time-series data of total California ISO system demand sampled at 10 minute intervals. This

data is normalized to a peak load of 2 MW. We generate static load profiles by randomly selecting

one day from 8 days of June 2012 data.

A specified fraction (α) of the total load energy requirement is assumed to be deferrable. Deferrable

loads are modelled as tasks. Task parameters (arrivals, deadlines, and energy needs) are randomly

generated based on typical EV charging characteristics [102]. These parameters are chosen to ensure

initial task feasibility (Ei ≤ mi(di − ai + 1)∆t). We use a constant maximum rate of charge mi

for all tasks consistent with the SAE J1772 AC Level 1 EV charging standard [101]. We create

a nominal profile for deferrable load {lDk }Nk=1 assuming each task receives constant power over its

entire service interval.

lDk =
∑
i∈Ak

Ei
di − ai + 1

(3.9)

This profile is used in bulk procurement decisions and serves as the baseline for computing reserve

reductions achieved through resource scheduling.

3.2.6.2 Generation

We use solar PV generation data, obtained from the PV integrator SolarCity, aggregated from

30 different but proximate installations in California to create renewable generation profiles. This

time series data of total PV generation is scaled to a peak output of 750 kW sampled at 1 minute

intervals. Day-long renewable generation profiles are randomly selected from this data set.

As the CM determines load allocations every 10 minutes, scheduling decisions are made at each

balancing time assuming the current amount of renewable generation is constant over the following

10 minute interval. However, reserve requirements for load balancing are computed using the actual

renewable generation profile.
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We create synthetic renewable generation forecasts for RHC scheduling by adding Gaussian noise

to these solar generation profiles: the forecast ŵt made at time k is

ŵt = wt +
t∑

n=k+1

εn , t = {k + 1, . . . , k +H} (3.10)

εn ∼ N
(
0, σ2

n

)
, ŵk = wk

where H is the horizon length of the RHC scheduling algorithm. We assume σ2
n increases linearly

with the prediction window length n. This applies to all k corresponding to times between 06:00

and 20:00 in the day. Outside this interval, we assume there is no renewable generation.

3.2.6.3 DA Market Clearing

We simulate bulk power purchase decisions based on hourly forecasts of load and renewable data.

For static loads, we use CAISO data containing hourly DA load forecasts (l̄S) for each hour of the

operating window. For deferrable loads, we create DA forecasts ( ¯lD) by adding zero-mean Gaussian

noise to hourly averages of nominal deferrable load (lD) with a variance of 3% of deferrable load.

For hourly renewable generation forecasts, the DA forecast w̄ employed is the average over the past

5 days of the mean generation for a particular hour-long interval. The bulk generation procured at

each time-step k, constant over hour-long intervals, is then:

Bk = l̄Sk + ¯lDk − w̄k (3.11)

3.2.7 Comparison of Scheduling Algorithms

Figure 3.10 illustrates the performance of EDF, LLF, and RHC scheduling policies in reducing

reserves for a typical test case. Each subfigure compares the load profiles achieved by a particular

resource scheduling algorithm to the baseline load and procured generation profiles. The generation

profile shown in each sub-figure is the sum of bulk and renewable power. These plots reveal that

resource scheduling can modify load profiles to closely match generation and thus reduce the need

for reserves.

Qualitatively, the load profiles under the various scheduling policies vary significantly towards the

end of the operating window (16:00-24:00 hours). Specifically, scheduling under EDF and LLF

results in greater up reserve requirements during this period than scheduling under RHC. We note
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Figure 3.10: Load profiles comparing resource scheduling under EDF, LLF, and RHC to no
scheduling base case

EDF LLF RHC

Up Reserve: Energy 35.6 38.6 40.4

Up Reserve: Capacity 18.8 1.9 27.2

Down Reserve: Energy 32.5 28.8 37.5

Down Reserve: Capacity -2.6 4.6 11.0

Table 3.3: Comparison of scheduling algorithms showing percentage reductions in 4 reserve cost
metrics (compared to no coordination baseline).

that Figure 3.10(b) indicates an initial spike in reserve procurement. This is an artifact of using a

zero-laxity reserve policy in conjunction with LLF. Here, the CM procures up reserves only when

task laxities approach 0. As the laxities of all tasks are identical under LLF, serving a particular

task with reserve generation implies all tasks must be served with reserves. In contrast, RHC-based

scheduling is characterized by balanced reserve procurements over the entire operating window

(Figure 3.10(c)).

Table 3.3 shows average percentage decreases in four cost metrics for each of these algorithms:

up reserve energy, up reserve capacity, down reserve energy, and down reserve capacity. Resource

scheduling clearly achieves significant reductions in reserve energy requirements. Scheduling un-

der RHC outperforms LLF and EDF modestly in both energy metrics. In contrast, scheduling

algorithms have significantly different performance in reserve capacity metrics where RHC is the

decisive winner. We attribute the small up reserve capacity reductions achieved by LLF (1.9%) to

large instantaneous reserve procurements resulting from the zero-laxity heuristic.

3.2.8 Deferrable load penetration

We now investigate the marginal benefit of scheduling additional deferrable loads. Specifically, we

vary the proportion of total load that is deferrable (α) and quantify the reserve cost reductions
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generated through RHC-based scheduling. Figure 3.11 shows percentage reductions in up reserve

energy and capacity costs. Similar results for down reserves are omitted due to space constraints.

Figure 3.11 shows that additional amounts of deferrable load enable greater reductions in the

up reserve metric. Moreover, the marginal benefit of having additional deferrable loads clearly

decreases with increasing deferrable load penetration. This suggests that the primary impact of

resource scheduling on reserve generation is evident even at low levels of deferrable load penetration.

At high deferrable load penetrations, energy reserve costs stem from surpluses or shortfalls in total

energy procured to meet load over the entire operating window. These imbalances are caused by

errors in mean values of load and generation forecasts employed in ex-ante markets. While resource

scheduling can address the reserve costs stemming from generation intermittency, it has limited

impact at mitigating these reserve costs.

Figure 3.11 exhibits no clear pattern with respect to capacity cost reductions. We remark that

reserve capacity computations are very sensitive to high frequency fluctuations of renewable gen-

eration. Resource scheduling decisions, made every 10 minutes, do not account for fluctuations in

renewable generation at shorter time-scales. However, reserve capacity is computed based on actual

generation data sampled at these shorter time scales. Accordingly, achieving large reserve capacity

cost reductions requires increases in the frequency at which resource scheduling decisions are made.
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Figure 3.11: Percentage reductions in up reserve cost achieved by RHC-based scheduling at
various levels of deferrable load penetration (α)

3.2.9 Load deferrability

Next, we investigate the impact of load deferrability, as captured by task laxity, on reserve require-

ments. In these simulations, all tasks have the same laxity (φ) upon arrival. For a fixed deferrable

load proportion (α = 0.2), we vary task laxity (φ) and compute the reserve energy and capacity

cost reductions achieved through RHC-based scheduling.
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Figure 3.12 shows percentage decreases in up reserve energy and capacity costs at various degrees

of scheduling flexibility. Clearly, greater load deferrability has a compelling impact on reserve

energy requirements. Specifically, up reserve energy costs can be reduced by a further 20% through

additional scheduling flexibility. In contrast, increased flexibility only enables modest improvements

in up reserve capacity. Similar results can be obtained for down energy and capacity reductions.

These simulations demonstrate the value of additional scheduling flexibility in reducing reserve

energy, and to a lesser extent, capacity cost reductions.
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Figure 3.12: Percentage reductions in up reserve cost achieved by RHC-based scheduling at
various levels of task deferrability (φ)

3.2.10 Practical considerations

Finally, we examine two practical considerations of implementing such coordinated scheduling al-

gorithms: computational requirements and impact of switching on EVs.

Table 3.4 shows the total time taken, by each algorithm, to compute charging schedules over the

entire operating interval. All simulations are performed using Matlab on a Dell XPS Studio 8100

machine with a processing speed of 2.93 GHz and 12.0 GB of RAM. We use the Gurobi optimization

solver to compute the RHC schedules. These values are computed for different levels of deferrable

load penetration (α). Clearly, the computational cost increases with the number of deferrable loads

(α). Moreover, coordinated scheduling under RHC is far more computationally intensive than under

EDF and LLF. This is expected as the RHC algorithm involves solving a sequence of QPs. We

remark that while the total computation time over the entire operating interval (24 hours) for RHC

is high (716s for α = 0.4), the amount of computation done at each balancing time is much shorter.

Indeed, RHC-based scheduling is computationally tractable for problems of the size described in

this chapter.
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α 0.1 0.2 0.3 0.4

EDF 0.06 0.12 0.17 0.23

LLF 0.06 0.11 0.15 0.20

RHC 41 124 399 716

Table 3.4: Comparison of scheduling algorithms showing computation time (s) required for dif-
ferent levels of deferrable load penetration (α).

Coordinated scheduling algorithms may cause increased on-off switching of deferrable loads. Fre-

quent switching of EV batteries is undesirable as it could adversely impact battery life and long-term

operation [117]. Figure 3.13 shows a cumulative distribution function on the maximum number of

on-off switches under RHC-based scheduling empirically computed over 100 test cases. One can

see that most tasks (50%) are operated continuously once scheduled, and a small number (10%)

are switched more than four times. Results for EDF- and LLF-based scheduling, omitted due to

space constraints, are qualitatively similar to Figure 3.13. As compared to RHC, EDF exhibits less

switching while LLF results in more.

Sporadic battery charging may have negative effects on battery state of health, though less so than

frequent charging and discharging. If the state of health impacts can be quantified, it would be

straightforward to extend the RHC framework to penalize frequent cycling in the objective function.

Future work involves addressing these issues.
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Figure 3.13: Cumulative distribution function on the maximum number of on-off switches under
RHC-based scheduling.

3.2.11 Conclusions and Future Work

We have examined scheduling algorithms for coordinated aggregation of deferrable loads and stor-

age. We modeled deferrable loads and storage as tasks and devices respectively. We then developed

EDF and LLF scheduling algorithms for resource scheduling, and a laxity-based heuristic for reserve
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scheduling. We offered a novel cost metric for RHC-based scheduling that explicitly handles operat-

ing reserve costs. These are the costs associated with managing non-contingency energy imbalances.

Through simulation studies, we find that scheduling under any of these algorithms reduces reserve

energy costs, while RHC-based scheduling also reduces reserve capacity costs. Most importantly,

we conclude that the benefits of coordinated aggregation can be realized from modest levels of both

deferrable load participation and flexibility.

Realizing the benefits of resource aggregation requires the convergence of technology infrastruc-

ture to support coordination, and market mechanisms to elicit and reward resource participation.

How should loads be compensated for their flexibility? Who pays for storage? What are fair pric-

ing mechanisms for flexibility? Are these sufficient to incentivize participation? These economic

aspects deserve detailed study. Implementation of CM algorithms requires an underlying commu-

nication/computation architecture. How much computation, bandwidth, latency, and reliability is

required? Should the control architecture be centralized or (partially) distributed? These essential

technological aspects also require exploration.
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A Market for Flexibility: Deadline

Differentiated Pricing

Clearly, there is an opportunity to transform the current operational paradigm, in which supply is

tailored to follow demand, to one in which demand is capable of reacting to variability in supply –

an approach which is generally referred to as demand response (DR) [2], with the primary challenge

being the reliable extraction of the desired response from participating demand resources on time

scales aligned with traditional bulk power balancing services.

Today, most demand response programs are largely limited to peak shaving and contingency-based

applications, with the two most common economic paradigms for customer recruitment and control

being: (1) direct load control under which the system operator or utility companies procure the

capability of load adjustment through a forward transaction (e.g. call options for interruptible

load) and (2) indirect load control under which consumers themselves adjust energy consumption

according to time-varying prices (e.g. through time of use or dynamic pricing). Dynamic (real-

time) pricing is often identified as a priority for the implementation of indirect load control [21].

Despite its potential to improve the economic efficiency of electricity markets [9, 22, 25, 41], it

subjects consumers with the risk of paying high peak prices, and can result in unreliable aggregate

(consumer) response [38]. Closer to the focus of this paper on delay-tolerant demand, a recent

empirical study [40] indicates that for plug-in hybrid electric vehicle (PHEV) charging, dynamic

pricing may perform worse than a flat-rate tariff (in term of fuel costs and emissions impacts). A

recent market monitoring report expresses the concern of California Independent System Operator

(CAISO) on dynamic real-time pricing:

48
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“While there are many economists that are enthusiastic about DR for all consumers, we are not

aware of a reported success of real-time pricing for a big, heterogeneous population area that could

serve as a benchmark. Mobilizing retail level demand side flexibility to reduce operating and invest-

ment cost in the electricity sector by employing smart grid technologies and market mechanism is

still regarded as work in progress.”

In short, performance based on indirect load control (e.g., dynamic real-time pricing) may not

provide the level of assurance required to avoid the use of conventional generation to manage the

electric power system. In the following sections, we propose a market framework that incentivizes

end-use consumers to truthfully reveal their preferences (e.g., their maximum capability to delay

energy consumption), which are important information needed for efficient implementation of direct

load control. The proposed market framework centers on the provisioning of deadline differentiated

energy services to end-use customers, whose quality differentiation maps to flexibility in the family

of feasible power profiles capable of satisfying said service. By offering a family of differentiated

services with forward contracts the coordinating entity implicitly purchases the right to manage in

real-time the delivery of power to participating customers. In this way, it can align its operational

requirements with the vast heterogeneity in end-use customer needs.

4.1 A Market for Quality-Differentiated Electric Power Service

Flexibility in consumption can be interpreted as a continuum of feasible power profiles capable of

preserving the end-use function of a demand resource. A basic question, is how to design a market

that enables a coordinating entity the ability to “extract this flexibility” for execution of real-time

control applications – e.g. balancing variability in renewable supply?

One possibility resides in the construction of a market for quality-differentiated electric power ser-

vices, where the price to a consumer for receiving a particular service is a monotonic function of

the desired quality-of-service (QoS). Naturally, a reduction in QoS is accompanied by a reduction

in price. For example, in the concrete setting of deferrable loads, deadline would be a natural

specification of QoS. The longer a customer is willing to delay the receipt of a specified quantity of

energy, the less that customer pays (per-unit) for said energy. As a QoS specification maps directly

to a set of feasible power profiles capable of servicing a load, the aggregator can imbed its extraction

of flexibility from the demand-side in its delivery of differentiated services with a guaranteed QoS

to participating consumers.

The general concept of service differentiation is not new [29, 30]. Many have studied the problem of

centrally coordinating the response of a collection of loads for load-following or regulation services
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– all while ensuring the satisfaction of a pre-specified QoS to individual resources [11, 14, 28, 31,

37, 43]. However, there has been little work in the way of designing market mechanisms that

endogenously price the flexibility being offered by the demand side, while incentivizing consumers

to truthfully reveal their preferences (e.g. the capability to delay energy consumption) to the

operator. Several classic [13, 44] and more recent [6] papers have explored the concept of reliability-

differentiated pricing of interruptible electric power service, where the consumer takes on the risk of

interruption in exchange for a reduction in the price for energy. Beyond the apparent issues of moral

hazard and difficulty in auditing the delivered reliability of such services, the primary drawback

of such an approach stems from the explicit transferal of quantity risk to the demand side, as it

requires participating consumers to plan their consumption in the face of uncertain supply. From a

consumer’s perspective, this amounts to solving a nontrivial problem of sequential decision making

under uncertainty.

With the aim of alleviating the aforementioned challenges, we propose a novel forward market for

deadline differentiated energy services, where consumers consent to deferred service of pre-specified

loads in exchange for a reduced per-unit energy price. The forward market for deadline differentiated

energy service is described as a three-step process. Time is assumed to be discrete with periods

indexed by k = 0, 1, 2, . . . , N .

Step 1 (Scheduling and Pricing). Prior to period k = 0, the supplier announces a mechanism

(π,κ) consisting of both a scheduling policy π (cf. its formal definition in Section 4.3), and pricing

scheme κ = (κ1, . . . , κN ) that maps the aggregate demand bundle x (cf. its definition in Step 2)

into a menu of deadline-differentiated prices,

pk = κk(x), k = 1, . . . , N. (4.1)

The price menu stipulates a per-unit price pk ($/kWh) for energy guaranteed delivery by period k.

At the heart of the mechanism design is the restriction that prices are nonincreasing in the deadline.

Namely, the longer a customer is willing to defer her consumption, the less she is required to pay.

We will use P = {p ∈ RN+ | p1 ≥ p2 ≥ . . . ≥ pN} to denote the set of feasible deadline-differentiated

price bundles.

Step 2 (Purchasing). Each consumer then purchases a bundle, a = (a1, . . . , aN )> ∈ RN+ (kWh),

of deadline-differentiated energy quantities, where ak denotes the quantity of energy guaranteed

delivery to the consumer by the deadline k. Before a stage k = 1, . . . , N , the total quantity (of

energy) delivered to a consumer who purchases a bundle a is at least
∑k

t=1 at, and is at most
∑N

t=1 at

(which is the consumer’s aggregate demand over the entire horizon). And naturally, a consumer

requesting a bundle a is required to pay p>a.
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We denote the aggregate demand bundle (summed over all individual consumer bundles) by x =

(x1, . . . , xN )> ∈ RN+ . Here, xk denotes the aggregate quantity requiring delivery by deadline k. The

mechanism design is such that price bundle p is determined by the aggregate demand bundle x,

according to the pricing scheme κ announced prior to period k = 0. A pricing scheme κ, which has

been defined in Eq. (4.1), is therefore a mapping from RN+ to P.

Step 3 (Delivery). Finally, the supplier must deliver the requested aggregate demand bundle x

according to the announced scheduling policy π. Essentially, a scheduling policy is said to be feasible

if it delivers each individual consumer’s requested energy bundle by its corresponding deadlines.

The supplier is assumed to have two sources of generation from which he can service demand:

intermittent and firm supply.

(a) Intermittent generation. An intermittent supply modeled as a discrete time random process

s = (s0, s1, . . . , sN−1) with known joint probability distribution. Here, sk ∈ S ⊂ R+ (kWh)

denotes the energy produced during period k. The intermittent supply is assumed to have

zero marginal cost.

(b) Firm generation. A firm supply with constant marginal cost c0 > 0, assumed to be time-

invariant.

A basic challenge addressed in this paper is the design of such a market mechanism, which imple-

ments truth-telling at a dominant strategy equilibrium across the population of consumers, while

maximizing social welfare between the supplier and consumers.

4.1.1 Summary and Contributions

Before continuing, we provide here a roadmap of the paper together with a summary of our main

contributions.

(a) We provide a stylized (yet quite reasonable) model for both delay-tolerant electricity demand

and a supplier with both firm and intermittent electricity generation in Sections 4.2 and 4.3,

respectively.

(b) We formulate the supplier’s scheduling problem as a constrained stochastic optimal control

problem and prove optimality of the earliest-deadline-first (EDF) scheduling policy, in terms

of minimizing the expected cost of firm supply over all feasible scheduling policies. As a

corollary, this result enables the explicit characterization of the supplier’s marginal cost curve
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in Theorem 4.9, which specifies the bundle of deadline-differentiated energy quantities x that

said supplier would like to provide at a given price bundle p.

(c) It is reasonable to expect that the supplier cannot observe the true deadline of each individual

consumer. The presence of asymmetric information may lead to significant welfare loss, if

consumers have incentive to lie about their true deadlines. In Section 4.4.1, we show that a

mechanism consisting of an EDF scheduling policy, together with a pricing scheme reflecting

the supplier’s marginal cost (cf. its characterization in Theorem 4.9), implements consumers’

truth-telling behavior in dominant strategies.

(d) Under an additional mild assumption on each consumer’s marginal valuation of energy (cf. As-

sumption 4.4.2), we show in Section 4.4.2 that a marginal cost pricing scheme, in combination

with EDF scheduling, induces an efficient competitive equilibrium between a population of

truth-telling consumers and a price-taking supplier. In other words, the pricing scheme char-

acterized in Theorem 4.9, which has been shown to be incentive compatible in Section 4.4.1,

results in an efficient market equilibrium, at which the social welfare (the sum of aggregate

consumer surplus and supplier profit) is maximized.

(e) In Section 4.4.2, we discuss briefly the possible implementation of the proposed deadline dif-

ferentiated pricing mechanism, through both a mechanism design and a (competitive) market

equilibrium approach.

4.1.2 Relation to the Literature

There have emerged several papers concerned with the design of incentives for delay-tolerant electric

load, e.g. the charging of plug-in hybrid electric vehicles (PHEVs). [23] propose a similar idea of

offering consumers a discounted per-unit electricity price in exchange for delaying their energy

consumption. However, the focus of [23] is not on pricing, but rather on the problem of optimal

scheduling faced by the operator, who is assumed to have full information about consumers – e.g.

knowledge of their deadlines. Closer to the present paper, [35] propose a greedy online mechanism for

electric vehicle charging, which is shown to be incentive compatible and achieve a bounded (worst-

case) competitive ratio. However, these theoretical results require a VCG-type (discriminatory-

price) payment scheme, as opposed to the uniform-price mechanism proposed in this paper. More

strongly, they impose an additional assumption that consumers cannot report a false deadlines

exceeding their true underlying deadlines. This substantially simplifies the problem of designing an

incentive compatible pricing scheme when consumers are permitted to report arbitrary deadlines –

the setting considered in the present paper.
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This work is also related to two streams of literature in operations research – the first of which,

applies the principal-agent paradigm to study the design of compensation schemes for both inventory

and production systems [15, 32], and the second on priority pricing for queuing systems with multiple

user classes [10, 24, 26, 34, 45]. The former body of literature deals primarily with problems resulting

from systems in which agents’ possess a hidden action (that cannot be observed by the principle;

also known as moral hazard). Closer to the present paper, the latter stream of literature addresses

the scenario in which hidden information is privately held by users in a queuing system. More

specifically, this body of work studies the (joint) pricing and scheduling for a queuing system with

a heterogeneous population of customers, who are in general characterized by differing delay costs

(per unit of time) and service time distributions. While the main result of this paper (a full

characterization of a joint pricing and scheduling scheme that is both socially optimal and incentive

compatible) is similar in spirit to the results derived in the aforementioned literature on priority

pricing for queuing systems, it differs in several important ways.

In the literature on priority pricing for queuing systems, it is usually assumed that there is an

infinite quantity of potential customers, who enter the (queuing) system until they are indifferent

between balking and entering – i.e. at an equilibrium the marginal surplus (of the last consumer)

is zero [10, 24, 26, 45]. This is not the case for retail electricity markets, where there are a large

but fixed number of consumers, whose marginal valuation on electricity consumption is commonly

higher than the electricity price.

As a result, in this paper we consider a fixed population of consumers, whose types are distributed

according to a certain distribution that is exogenous and unknown to the service provider. This

setting enables our model to account for the surplus of all consumers and not only those who

are admitted into the system. It does, however, generate additional technical challenges, as the

aggregate demand depends not only on the pricing scheme (determined by the service provider),

but also on the distribution of consumer types.1

There are also important technical differences between our model and the queuing system models.

On the demand side, while customers in a queueing system are nominally distinguished by their

(uniform) delay cost per unit time, our model considers the setting in which each customer is

capable of delaying her energy consumption until a specific deadline without utility loss. This is

motivated by the fact that an electricity consumer’s delay cost is in general not uniform. On the

supply side, the operating cost of a service provider in queuing systems is deterministic and known

1Note that in the literature on priority pricing for queuing systems, it is usually assumed that the service provider
knows the demand curve, and therefore the arrival rates of (different types of) customers are determined by the
service-differentiated prices set by the service provider.
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[24, 26, 34, 45]. While in our model, we treat the operating cost of a service provider as random to

account for the intermittency of supply derived from renewable generation.

Finally, we point out the relation of the present work to recent literature exploring the design of

revenue-maximizing pricing mechanisms capable of inducing truth revelation of consumers’ privately

known deadlines for purchasing a single object. [1] studies the problem of revenue maximization in

queueing systems, where consumers hold private information about their preferences. Closer to the

present paper, [27] studies the revenue-maximizing sale of a single object to buyers with differing

deadline preferences for buying. Considering a special case with two periods and two buyers, the

author characterizes a pricing mechanism that is revenue-maximizing among all incentive compatible

mechanisms.

4.2 Delay-Tolerant Demand Model

We consider a model involving a continuum of consumers, indexed by i ∈ [0, 1]. Since each indi-

vidual consumer’s action has no influence on the price, she will act as a price taker. This setting

is reasonable in the context of retail electricity markets, as each consumer herself is too small to

influence the price. We note that the price-taking assumption is somewhat standard in the liter-

ature on mechanism design for queueing systems, where each consumer is assumed to be either

infinitesimally small [1, 10, 26, 45] or price-taking [24].

Consider a utility model yielding a consumer preference ordering on deadlines. It is natural to as-

sume that the utility derived from electricity consumption is non-increasing in the delivery deadline

k. Namely, the longer the delay in consumption, the larger the potential loss of utility. In particular,

we assume that each consumer has a single deadline preference. More specifically, a consumer with

deadline preference k derives no disutility from deferring consumption until deadline k and derives

zero utility for any consumption thereafter. This assumption is reasonable for electric loads such

as plug-in electric vehicles (PEVs), dish washers, and laundry machines, as customers commonly

require only that such loads are fully executed before a specific time.

Naturally then, we define the type of consumer i as a triple, θi = (ki, Ri, qi), consisting of her

deadline ki ∈ N, marginal utility Ri ∈ R+, and maximum demand qi ∈ R+. Clearly, consumer i’s

utility function depends only on her type θi, and is assumed to satisfy the following conditions.

Assumption 4.2.1. The utility received by a type-θi consumer Uθi(y) depends only on the con-

sumer’s cumulative consumption by her deadline ki, y. The utility function Uθi is non-negative and
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non-decreasing over [0, qi] with

Uθi(y) ≤ yRi, ∀ y ∈ [0, qi],

where Ri = Uθi(qi)/qi. Further, Uθi(y) = Uθi(qi) for all y ≥ qi. �

Note that the marginal utility Ri associated with a consumer type θi is defined as the ratio of the

maximum utility Uθi(qi) to the maximum demand qi. The above assumption simply requires that

over [0, qi], the utility function is below the straight line that connects the two points (0, 0) and

(qi, Uθi(qi)), and then becomes flat over [qi,∞). We note that Assumption 4.2.1 holds for any utility

function that is non-decreasing and convex over [0, qi]. On the other hand, incentive compatibility

may fail to hold for utility functions that are concave over [0, q] (cf. the discussion in Remark 4.15).

In the following example we discuss some forms of utility functions that satisfy Assumption 4.2.1.

Example 4.1. The following piecewise linear utility function satisfies Assumption 4.2.1

Uθi(y) = Ri ·min{y, qi}.

Indeed, every utility function that lies below the above piecewise linear function satisfies Assumption

4.2.1, for example, utility functions of the following form

Uθi(y) =



0, if 0 ≤ y ≤ Ti,

R̄i(y − Ti), if Ti < y ≤ qi,

Uθi(qi), if qi < y,

where Ti > 0 is the minimum amount of energy required by the consumer (e.g., in order to fulfill

her next trip). The consumer obtains zero utility if the battery level is below this threshold, and her

“marginal utility” Ri is given by R̄i(qi − Ti)/qi. In Fig. 1 we plot four utility functions that satisfy

Assumption 4.2.1. �

We use Θ to denote the set of all possible types, which is assumed to be finite. Let ρ : Θ → [0, 1]

denote the distribution of consumer types over the space Θ. In other words, for every θ ∈ Θ,

there is a ρ(θ) fraction of consumers of type θ. It follows that
∑

θ∈Θ ρ(θ) = 1.

Definition 4.1 (Consumer action). The action of a consumer is a vector a = (a1, . . . , aN )> ∈ RN+ ,
where ak denotes the amount of energy guaranteed delivery by deadline k. The maximum amount
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Figure 4.1: Plot of four utility functions that satisfy Assumption 4.2.1.

of energy any consumer can request is Q = max(k,R,q)∈Θ{q}. Hence, each consumer’s action space

is restricted to A =
{
a ∈ RN+ |

∑
k ak ≤ Q

}
. �

Note that in the above definition we have that q ≤ Q for every type θ = (k,R, q). In other words, it

is feasible for every consumer to request her maximum demand q. Given a fixed scheduling policy

and pricing scheme, a consumer’s strategy ϕ : Θ → A maps her type into an action. In the

proceeding analysis, we will be concerned with identifying conditions on both the scheduling policy

and pricing scheme that lead to efficient allocations, while inducing consumers to truthfully reveal

their underlying deadline preferences. A truth-telling strategy is defined as follows.
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Definition 4.2 (Truth-telling). A consumer of type θ = (k,R, q) is defined to be truth-telling

if she requests q units of energy at her true deadline k, and nothing else. Formally, a strategy

a∗ = ϕ∗(θ) is said to be truth-telling if it satisfies Eq. (4.2).

a∗j =


q, j = k,

0, j 6= k.
(4.2)

We note that under an arbitrary scheduling policy and pricing scheme, it is possible that a con-

sumer’s best response may differ from the truth-telling action defined in (4.2). Our aim is to provide

an explicit characterization of a scheduling policy and pricing scheme that implement truth-telling

as a dominant strategy for every consumer i. Given the collection of consumer types θ = {θi}i∈[0,1]

and a strategy profile ϕ = {ϕi}i∈[0,1], the aggregate demand bundle is given by the mapping

x = d(θ,ϕ) =

∫
i∈[0,1]

ϕi(θi)η(di), (4.3)

where η is the Lebesgue measure defined over [0, 1], and d = (d1, . . . , dN ) maps (θ,ϕ) into an

N -dimensional nonnegative vector. Note that we have implicitly assumed that for every θ, the

function ϕ = {ϕi(θi)}i∈[0,1] is Lebesgue integrable in i. This assumption holds, for example, under

a symmetric strategy profile according to which all consumers of the same type take the same

action2.

In particular, the aggregate demand under the truth-telling strategy profile ϕ∗ = {ϕ∗i }i∈[0,1] (cf.

Definition 4.2) simplifies to

x∗j = dj(θ,ϕ
∗) =

∑
θ∈Θ

q · 1{j=k} · ρ(θ), j = 1, . . . , N, (4.4)

where θ = (k,R, q) and 1{·} denotes the indicator function.

4.2.1 Consumer Surplus

We are now in a position to characterize the expected surplus derived by a consumer, which depends

on (i) her own type and strategy, (ii) the remaining population’s type and strategy profile, (iii) the

pricing scheme, and of course, (iv) the scheduling policy employed by the supplier to deliver the

requested demand bundles. Before formally characterizing an individual consumer’s surplus in our

2We note that it is usually assumed in the literature (on priority pricing for queuing systems) that consumers use
a symmetric strategy profile [10, 24, 26, 45].
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model, we first introduce pertinent notation and assumptions. Given an aggregate demand bundle

x, we define the random variable ωπk,i(x,a) as denoting the amount of energy delivered to consumer

i by stage k given her requested bundle a. This random variable, which naturally depends on the

scheduling policy π employed by the supplier, is formally defined in Appendix B.1 (cf. Eq. (B.1)).

Moreover, we have allowed the supply ωπk,i(x,a) to depend explicitly on the consumer index i, as

the supplier may employ a scheduling policy that is consumer index-dependent. This dependency

on the scheduling policy is made precise in Section 4.3.

We assume that the requested quantities are always supplied by their corresponding deadlines and

the total quantity delivered to a consumer never exceeds said consumer’s total demand. This is

made precise in the following assumption.

Assumption 4.2.2. Given the supplier’s delivery commitments, we require that for each consumer

i ∈ [0, 1] taking action a ∈ A that

∑k

t=1
at ≤ ωπk,i(x,a) ≤

∑N

t=1
at, almost surely,

for all 1 ≤ k ≤ N and aggregate demand bundles x ∈ RN+ . 2

Given such a market mechanism, it is important to understand when a consumer has incentive to

misreport her underlying deadline preference. Consider a consumer i of type θi = (k,R, q) facing

a particular scheduling policy and pricing scheme satisfying all prior assumptions. Because of

monotonicity of prices and the service guarantee provided by Assumption 4.2.2, said consumer has

no incentive to request any quantity of energy before her true deadline k. However, if the potential

price differences among different deadlines are large enough, a consumer may have an incentive to

report a false later deadline if early delivery is likely (i.e. with high probability) under the specified

scheduling policy π. Intuitively, a consumer might have incentive to report a false bundle if the

reduction in total expenditure derived by requesting quantities with later deadline exceeds the

expected loss of utility incurred by a shortfall in the delivered amount by her true deadline k. As

such, in designing a pricing scheme and scheduling policy, it is important that the price differential

across deadlines balance the likelihood of early supply under the specified scheduling policy.

To formally define and study the incentive compatibility of a particular mechanism (i.e. pricing

scheme and scheduling policy), we now define the expected surplus derived by a consumer under a

particular strategy. Given a scheduling policy π and a pricing scheme κ employed by the supplier,

and the types of all consumers θ = {θi}i∈[0,1], consumer i’s expected surplus under a strategy

profile ϕ = {ϕi}i∈[0,1] is given by

vπi (θ,ϕ,κ) = E
{
Uθi

(
ωπk,i(x,a)

)}
− κ(x)>a, (4.5)
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where k is consumer i’s true deadline, x = d(θ,ϕ) is the aggregate demand bundle, and a = ϕi(θi)

is the action taken by consumer i. Here, expectation is taken over the random variable ωπk,i(x,a).

Since each individual consumer is assumed to be infinitesimal in size, and thus have no influence

on the price, a scheduling policy π together with a pricing scheme κ indeed defines a game for the

(price-taking) consumer population, with each individual consumer’s payoff expressed in (4.5). We

note that this is an aggregative game, where the payoff function of each player depends on the

strategy profile (used by all players) only through the sum of their actions – namely, the aggregate

demand bundle x = d(θ,ϕ). We can therefore denote the payoff to consumer i under the aggregate

demand bundle x as

V π
i (θi, ϕi,x,κ) = E

{
Uθi

(
ωπk,i(x,a)

)}
− κ(x)>a, (4.6)

where a = ϕi(θi). Moreover, it follows from Assumption 4.2.2 that under the truth-telling strategy

ϕ∗i , the payoff derived by consumer i simplifies to the deterministic quantity

V π
i (θi, ϕ

∗
i ,x,κ) = Uθi(q) − κk(x)q, (4.7)

where θi = (k,R, q). It is important to note that the expression in (4.7) does not depend on the

types and strategies of the other consumers, or the scheduling policy used by the supplier (as long

as Assumption 4.2.2 is respected).

Nash equilibrium may not be a plausible solution concept to explore for this game, as it requires each

individual consumer to have information regarding the other consumers’ types, as well as knowledge

of the distribution of ωπk,i(x,a), which in turn depends on the distribution of the intermittent

supply process s. We therefore focus on a much stronger solution concept – namely, the dominant

strategy equilibrium of the game. A strategy ϕi is a dominant strategy for consumer i of type

θi, if it maximizes her expected payoff regardless of the actions taken by the other consumers. We

have the following definition.

Definition 4.3 (Dominant strategy). A strategy ϕi is said to be a dominant strategy for con-

sumer i of type θi, if it maximizes her expected payoff regardless of the actions taken by the other

consumers, i.e.

V π
i (θi, ϕi,x,κ) ≥ V π

i (θi, ϕ
′
i,x,κ), ∀ ϕ′i, ∀ x ∈ RN+ .

Moreover, a mechanism that implements truth-telling in dominant strategies is said to be incentive

compatible, which we formally define in Definition 4.12. Surprisingly, we show in Section 4.4 that

a mechanism consisting of earliest-deadline-first (EDF) scheduling in combination with a pricing
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scheme reflecting the supplier’s marginal cost is both incentive compatible and induces an efficient

competitive equilibrium between the supplier and consumers.

Remark 4.4 (An alternative formulation). One can define an alternative game among the consumer

population by leveraging on an additional assumption that the supplier has a priori knowledge of

the aggregate demand curve, but not necessarily the type of each individual consumer. We note

that this is the typical setting considered in the literature on priority pricing for queuing systems

[24, 26, 34, 45]. In this setting, the supplier can simply announce a fixed price bundle p ∈ P (as

opposed to a pricing scheme κ(·)), which also defines a game between the consumers. Our results

on incentive compatibility outlined in Section 4.4 imply that with the knowledge of the aggregate

demand curve, the supplier can simply set the price bundle to coincide with the intersection of the

marginal cost supply and demand curves, thus inducing consumers’ truth-telling behavior at an

efficient competitive equilibrium between the supplier and consumers. We discuss this alternative

approach in more detail in Section 4.4.2.2.

4.3 Supply Model

As one of the primary thrusts of this paper being the characterization of competitive equilibria

between supply and demand and their efficiency properties, we now consider the role of a price-

taking supplier, whose aim is to maximize his expected profit under a given price bundle. The

expected profit derived by a supplier amounts to the revenue derived from the sale of a bundle

of deadline differentiated energy quantities less the cost of firm supply required to service said

bundle. In characterizing the supply curve under price taking behavior, the supplier’s objectives

are two-fold:

Scheduling. Determine a causal scheduling policy to allocate the realized intermittent supply across

the deadline differentiated consumer classes, in order to minimize the expected cost of firm supply

required to ensure satisfaction of the aggregate demand bundle.

Pricing. Fixing the optimal scheduling policy, determine a supply curve that specifies the bundle of

energy he is willing to supply at every price bundle. In Theorem 4.9, we explicitly characterize the

supplier’s marginal cost supply curve, which is used to construct an efficient competitive equilibrium

between supply and demand (cf. Definition 4.16).

Remark 4.5. Observe that the problem of characterizing a marginal cost supply curve amounts to

the explicit solution of a two-stage stochastic program, whose expected recourse cost is the optimal

value of a constrained scheduling problem parameterized by the aggregate demand bundle.
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4.3.1 Optimal Scheduling

When considering the problem of scheduling, it’s important to distinguish between intra-class and

inter-class scheduling. Loosely speaking, an inter-class scheduling policy (denoted by σ) refers to

manner in which available supply is allocated across the deadline differentiated demand classes,

while an intra-class scheduling policy (denoted by φ) refers to the manner in which available supply

is allocated across customers within a given demand class. One can readily see that, given a fixed

aggregate demand bundle x, the supplier’s expected profit depends only on the inter-class scheduling

policy and is invariant under the family of feasible intra-class scheduling policies. However, as

one might easily notice, the intra-class scheduling policy has a direct effect on consumer purchase

decisions inasmuch as it affects the distribution on each individual’s random supply ωπk,i(x,a), where

π = (σ, φ) denotes the joint inter and intra-class scheduling policy employed by the supplier.

An important assumption we will make on the supply side is that there is no upper bound on the

amount of energy the supplier can deliver within any given time period. This assumption, although

appearing strong, is not far from practice, as batteries with high power to energy ratios are rapidly

becoming available for electric vehicles. For example, the lithium-ion titanate batteries are capable

of recharging to 95% of full capacity within approximately ten minutes [8, 17]. We also note that

fast (DC) chargers that can fully charge an electric vehicle within half an hour are being installed

in public locations, e.g., parking lots, shopping centers, hotels, theaters, and restaurants [47].

4.3.1.1 Inter-class scheduling policies

We now characterize the optimal inter-class scheduling policy as a solution to a constrained stochas-

tic optimal control problem. First, we define the system state at period k as the pair (zk, sk) ∈
RN+ × R+, where the vector zk denotes the residual demand requirement of the original aggregate

demand bundle x after having been serviced in previous periods 0, 1, · · · , k− 1. Define as the con-

trol input the vectors uk,vk ∈ RN+ , which denote (element-wise in j) the amount of intermittent

and firm supply allocated to demand class j at period k, respectively. Naturally then, the state of

residual demand evolves according to the discrete time state equation:

zk+1 = zk − uk − vk, k = 0, . . . , N − 1, (4.8)

where the process is initialized with z0 = x. The delivery deadline constraints manifest in a

sequence of nested constraint sets RN+ ⊃ Z1 ⊇ Z2 ⊇ · · · ⊇ ZN = 0 converging to the the origin,
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where the set Zk characterizes the feasible state space at stage k. More precisely,

Zk = {z ∈ RN+ | zj = 0, ∀ j ≤ k}.

In other words, the feasible state space is such that each demand class is fully serviced by its

corresponding deadline. We define as the feasible input space at stage k the set of all inputs

belonging to the set

Uk(z, s) = {(u,v) ∈ RN+ × RN+ | 1>u ≤ s and z− u− v ∈ Zk+1},

which ensures one-step state feasibility and that the total allocation of renewable supply does

not exceed availability at the current stage. In characterizing the feasible set of causal scheduling

policies, we restrict our attention to those policies with Markovian information structure, as opposed

to allowing the control to depend on the entire history. This is without loss of optimality, as we

will later show in Lemma B.1, which reveals, more strongly, that Markovian policies are capable of

performing as well as the optimal oracle policy. We describe the scheduling decision at each stage

k by the functions

uk = µk(z, s) and vk = νk(z, s),

where µk : Zk × S → RN+ and νk : Zk × S → RN+ . A feasible inter-class scheduling policy

is any finite sequence of scheduling decision functions σ = (µ0, . . . ,µN−1,ν0, . . . ,νN−1) such that

(µk,νk)(z, s) ∈ Uk(z, s) for all (z, s) ∈ Zk×S and k = 0, . . . , N−1. We denote by Σ(x) the feasible

inter-class policy space. Throughout the paper, we will suppress the explicit dependency of the

feasible policy set on the aggregate demand bundle x, when it’s clear from the context.

4.3.1.2 Intra-class scheduling policies

Recall that an intra-class scheduling policy φ determines the allocation of available supply within

each deadline-differentiated demand class, where the supply available to each demand class is de-

termined by the inter-class policy σ ∈ Σ. We denote the feasible intra-class policy space by

Φ(σ), which is parameterized by a given inter-class policy σ ∈ Σ. We denote by π = (σ, φ) the joint

inter and intra-class scheduling policy employed by the supplier.

It is important to note that the supplier’s profit depends only on the inter-class scheduling policy.

Namely, for any feasible inter-class policy σ, all feasible intra-class scheduling policies φ ∈ Φ(σ)

yield the supplier the same expected profit. This follows from the supplier’s indifference to supply

allocation between consumers within a given demand class. Therefore, in characterizing the optimal
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scheduling policy for the supplier, we restrict our attention to the characterization of optimal inter-

class policies σ ∈ Σ for the remainder of the paper. On the other hand, the intra-class scheduling

policy employed by the supplier may have significant influence on consumer utility, for example,

when the intermittent supply can fulfill only a fraction of the total demand within a demand class.

As the formal definition of feasible intra-class policies is not directly relevant to the development

of the main results to follow, their precise specification is deferred to Appendix B.1 to maintain

continuity in exposition.

4.3.1.3 Supplier profit

We define the expected profit J(x,p, σ) derived by a supplier as the revenue derived from an ag-

gregate demand bundle x less the expected cost of servicing said demand bundle under a feasible

inter-class scheduling policy σ ∈ Σ(x). More precisely, let

J(x,p, σ) = p>x − Q(x, σ), (4.9)

where Q denotes the expected cost of firm generation incurred servicing x under a feasible policy

σ ∈ Σ. It follows that

Q(x, σ) = E
N−1∑
k=0

c>vσk , (4.10)

where c = (c0, . . . , c0). We write the state and control process as {zσk}, {uσk}, and {vσk} to

emphasize their dependence on the policy σ. We wish to characterize scheduling policies that lead

to a minimal expected cost of firm supply. The inter-class scheduling policy σ∗ ∈ Σ(x) is optimal

if

Q(x, σ∗) ≤ Q(x, σ), for all σ ∈ Σ(x). (4.11)

We denote by Q∗(x) = Q(x, σ∗) the minimum expected cost of firm supply. We proceed with a

characterization of the optimal inter-class scheduling policy, σ∗, in the following Section.
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4.3.1.4 Optimal scheduling policy

Theorem 4.6 (Earliest-Deadline-First). Given an aggregate demand bundle x ∈ RN+ , the optimal

scheduling policy σ∗ ∈ Σ(x) is given by:

µj,∗k (z, s) = min
{
zj , s−

∑j−1

i=1
µi,∗k (z, s)

}
, νj,∗k (z, s) = (zj − µj,∗k (z, s)) · 1{k=j−1},

for j = 1, . . . , N , k = 0, . . . , N − 1, and (z, s) ∈ Zk × S.

Qualitatively, the optimal inter-class scheduling policy σ∗ is such that the intermittent supply sk

available at each period k is allocated to those unsatisfied demand classes with earliest-deadline-

first (EDF), while the firm supply is dispatched only as a last resort to ensure demand satisfaction.

In addition, the optimal policy is distribution-free – which is attractive from an implementation

perspective, as the optimal input sequence can be computed causally without requiring explicit

knowledge of the underlying distribution on s. For the remainder of the paper, we casually refer to

σ∗ as the EDF scheduling policy.

While a formal proof of Theorem 4.6 is deferred to Appendix B.2, the crux of our argument centers

on showing that the earliest-deadline-first (EDF) policy performs (almost surely) as well as any

non-causal policy with perfect foresight – the so called oracle optimal policy. Technically, the proof

relies on showing that any oracle optimal schedule can be inductively mapped to the EDF schedule

without causing an increase in the corresponding cost of firm supply, almost surely.

Remark 4.7 (The value of oracle information). While we have made no a priori assumptions re-

garding the conditional independence structure of the stochastic process s, one can show that the

optimal Markovian policy σ∗ cannot be improved upon by any other causal policy with complete

information history. More strongly, we establish in Lemma B.1 that the cost of firm supply realized

under the causal policy σ∗ almost surely dominates the cost realized under any non-casual policy.

This ensures that the policy σ∗ cannot be improved upon for any sample path realization of inter-

mittent supply process s. Essentially, this implies that there is no additional value derived from

having prescient information regarding the realization of s.

4.3.2 Marginal Cost Pricing

Given the EDF characterization of the optimal inter-class scheduling policy in Theorem 4.6, we are

now in a position to characterize the supplier’s optimal supply curve under price taking behavior.

To aid in our analysis, we define a residual random process induced by the optimal scheduling policy
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σ∗ as

ξk+1(x, s) = ξk(x, s)+ + sk − xk+1, (4.12)

for k = 0, . . . , N − 1, where ξ0 = 0. A positive residual, ξk(x, s) > 0, denotes the amount of

intermittent supply leftover after having serviced demand class k, according to the EDF inter-class

scheduling policy σ∗, by its deadline k. A negative residual, ξk(x, s) ≤ 0, denotes the amount by

which the intermittent supply fell short or, equivalently, the quantity of firm supply required to

ensure satisfaction of the demand class k. While ξk(x, s) depends on both the aggregate demand

bundle x and intermittent supply process s, we omit this dependency when it is clear from the

context and compactly write ξ = (ξ0, . . . , ξN ) ∈ RN+1. Using this newly defined process, we

have the following characterization of the minimum expected cost of firm generation under EDF

scheduling. First, we require an assumption.

Assumption 4.3.1. The joint probability distribution of the intermittent supply process s is as-

sumed to be absolutely continuous and have compact support. 2

Lemma 4.8. The expected recourse cost Q∗(x) (4.11) derived under and aggregate demand bundle

x ∈ RN+ and EDF scheduling policy σ∗ ∈ Σ(x) satisfies

Q∗(x) = −c0 ·
N∑
k=1

E
{
ξk(x, s)−

}
, (4.13)

and is convex over RN+ and differentiable over (0,∞)N in x.

Lemma 4.8, the proof of which can be found in Appendix B.3, admits a natural interpretation.

Namely, the expected minimum cost of firm supply is equivalent to the amount by which the

intermittent supply is expected to fall short for each demand class under EDF scheduling. Moreover,

it follows readily that the expected profit J(x,p, σ∗) derived under EDF scheduling is differentiable

and concave in x ∈ RN+ . As such, any allocation x satisfying the first order condition,

∇x J(x,p, σ∗)>(x− y) ≥ 0 for all y ∈ RN+ , (4.14)

is profit maximizing for the supplier given a particular price bundle p ∈ P. Accordingly, we provide

an explicit characterization of the supplier’s marginal cost supply curve in the following Theorem.
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Theorem 4.9 (Marginal cost supply curve). An allocation x is profit maximizing for a given price

bundle p, if and only if p = ζ(x), where the mapping ζ : RN+ → P satisfies

ζk(x) = c0 · P(ξk ≤ 0) + c0 ·
N∑

t=k+1

P(ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0), k = 1, . . . , N. (4.15)

Proof. Proof. Fix a price bundle p ∈ RN+ . We have previously shown in Theorem 4.6 that the EDF

inter-class scheduling policy σ∗ ∈ Σ(x) is optimal for any demand bundle x ∈ RN+ . Hence, it suffices

to show that p = ζ(x) satisfies the first order condition for optimality (4.14). Taking the gradient

of the supplier’s expected profit with respect to x yields ∇x J(x,p, σ∗) = p − ∇x Q
∗(x). It

remains to show that
∂Q∗(x)

∂xk
= ζk(x)

for k = 1, . . . , N. Working the with the simplified form of Q∗ established in Lemma 4.8, it follows

readily that

∂Q∗(x)

∂xk
= c0 ·

N∑
`=k

∂

∂xk
E
{
ξ`(x, s)−

}
, (4.16)

where we’ve truncated the summation from below at ` = k, as ξ`(x, s) is wholly independent of xk

for all ` < k. We therefore restrict our attention to ` ≥ k for the remainder of the proof. The next

step of the proof relies on the ability to interchange the order of differentiation and expectation in

(4.16). It is obvious from construction that ξ`(x, s)− is both a continuous function of (x, s) and

piecewise affine in xk (with a finite number of linear segments) for each s. It follows that ξ`(x, s)−

is differentiable almost everywhere in xk ∈ R+ and satisfies∣∣∣∣ ∂∂xk ξ`(x, s)−
∣∣∣∣ ≤ 1

almost everywhere. Then, for each xk ∈ R+, we have that ∂ξ`(x, s)−/∂xk is integrable in xk and

by the dominated convergence theorem

∂

∂xk
E
{
ξ`(x, s)−

}
= E

{
∂

∂xk
ξ`(x, s)−

}
.
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Finally, it is not difficult to see that

∂

∂xk
ξ`(x, s)− =


1{ξk≤0}, ` = k,

1{ξ`≤0} ·
`−1∏
t=k

1{ξt>0}, ` > k.

And taking expectation, we have the desired result.

Remark 4.10 (Price monotonicity). In Eq. (4.15), we indeed characterize a marginal cost pricing

scheme ζ, which maps every aggregate demand bundle in RN+ into a deadline differentiated price

bundle in P. Moreover, one can readily interpret the pricing scheme as equating the price pk for

energy with deadline k (up to a proportionality constant c0) with the probability that firm supply

will be required to service the bundle x at any subsequent time period t ≥ k− 1 under the optimal

inter-class scheduling policy σ∗. Naturally, the larger the probability of shortfall, the larger the

price. Moreover, it is readily verified that the supply curve p = ζ(x) yields nonincreasing prices

for any demand bundle. More precisely,

c0 ≥ ζ1(x) ≥ ζ2(x) ≥ · · · ≥ ζN (x)

for all x ∈ RN+ . This property of price monotonicity is consistent with our initial criterion for con-

structing such a market system. Namely, the longer a customer is willing to defer her consumption

in time, the less she is required to pay per unit of energy.

4.4 Incentive Compatibility and Market Equilibrium

We now explore the game theoretic and welfare implications of the mechanism defined in terms of

the scheduling policy and pricing scheme developed in Section 4.3. In particular, we show in Section

4.4.1 that a mechanism consisting of earliest-deadline-first (EDF) scheduling in combination with

a pricing scheme reflecting the supplier’s marginal cost (4.15) is indeed incentive compatible. In

addition, we discuss in Section 4.4.2 the implementation of the proposed deadline differentiated

pricing scheme. And, under an additional mild assumption on each consumer’s marginal valuation

on energy, we show that the marginal cost pricing scheme defined in (4.15) achieves social optimality

at a competitive market equilibrium.
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4.4.1 Incentive Compatibility

Assumption 4.4.1. We assume that both the inter and intra-class scheduling policies π = (σ, φ)

and the pricing scheme κ employed by the supplier are commonly known by the consumers. 2

Remark 4.11. Note that consumers need not to know the joint probability distribution of the

intermittent supply process s and the aggregate demand bundle x. Instead, each consumer is

assumed to know how the distribution of the intermittent supply process s and the aggregate

demand bundle x determine both the price bundle and the (random) energy delivery.

Definition 4.12 (Incentive compatibility (IC)). A scheduling policy π = (σ, φ) and pricing scheme

κ are deemed incentive compatible (IC) for consumers of type θ, if it is a dominant-strategy for

consumers of this type to be truth-telling. Formally, a mechanism (π,κ) is incentive compatible for

every consumer i ∈ [0, 1] of type-θ, if

V π
i (θ, ϕ∗i ,x,κ) ≥ V π

i (θ, ϕi,x,κ), ∀ ϕi, ∀ x ∈ RN+ , (4.17)

where ϕ∗i is the truth-telling strategy defined in Definition 4.2. �

Remark 4.13. Unlike the Nash equilibrium characterization of aggregate consumer behavior com-

mon to the related literature [10, 24, 26, 45], we require a dominant-strategy implementation in

Definition 4.12.

Theorem 4.14 (Incentive compatibility). Suppose that Assumptions 4.2.2 and 4.4.1 hold. Consider

the mechanism (π∗, ζ) defined by the marginal cost pricing scheme ζ characterized in Eq. (4.15),

in combination with the scheduling policy π∗ = (σ∗, φ) consisting of the EDF inter-class scheduling

policy σ∗ and an arbitrary feasible intra-class policy φ ∈ Φ(σ∗). It follows that the mechanism

(π∗, ζ) is incentive compatible for all consumers of type θ = (k,R, q) satisfying R ≥ c0.

We defer the proof of Theorem 4.14 to Appendix B.4 for the ease of exposition. Since the optimal

price schedule is nonincreasing in deadline, and demand is guaranteed to be met before the requested

deadline, every consumer i has no incentive to request a positive amount of electricity before her

true deadline ki. In the proof of Theorem 4.14 we show that a consumer cannot strictly benefit

from requesting positive amount of energy after her true deadline ki, regardless of the actions taken

by other consumers. Under the EDF scheduling policy, there is positive probability that the energy

requested by some period k′ > ki cannot be delivered by the consumer’s true deadline ki. Under

marginal cost pricing, the price difference between the two deadlines, ki and k′, is shown to be not

large enough to compensate the expected utility loss resulting from the possible shortfall in energy

consumption before deadline ki. The incentive compatibility result then follows.
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Note that the incentive compatibility result established in Theorem 4.14 is strong. The pricing

scheme in Eq. (4.15) in combination with EDF scheduling implements truth-telling in dominant

strategies, regardless of the type distribution over consumer types and probability distribution on

the intermittent supply process s. Moreover, as the pricing scheme ζ represents the supplier’s

marginal cost, it can be shown to achieve social optimality, if the condition R ≥ c0 holds for every

type θ ∈ Θ (cf. Corollary 4.17).

Remark 4.15 (Caveats). We note that incentive compatibility may fail to hold if certain assumptions

regarding a consumer’s utility function are violated. First, one can readily show that incentive

compatibility may fail to hold for a consumer of type θ = (k,R, q), if the marginal cost of firm

supply exceeds her marginal valuation of energy, i.e. R < c0. Second, we note that the result in

Theorem 4.14 fails to hold for arbitrary concave utility functions. This is intuitive, as a consumer

with a highly concave utility function may prefer to report a false deadline that is later than her

true deadline k, if she can obtain a fraction of her demand before stage k (but a utility close to the

maximum, because of the large underlying concavity of her utility function) with high probability,

at a much lower price.

4.4.2 Implementation and Market Equilibrium

We briefly discuss the implementation of the proposed market for deadline differentiated energy

services through both a mechanism design and market equilibrium based approach. First, we make

an assumption under which we will operate for the remainder of the paper.

Assumption 4.4.2. We assume that for every (k,R, q) ∈ Θ, we have R ≥ c0. 2

We note that Assumption 4.4.2 is quite reasonable for electricity consumers, as their marginal

valuation on electricity consumption is commonly higher than the nominal price of electricity,

which is represented in our model by c0. As a result, electricity demand is usually considered to be

inelastic [42, 46], especially in the short term [48].

4.4.2.1 A mechanism design approach

One possibility entails its implementation through a classical mechanism-design approach:

1. The supplier announces the mechanism (π∗, ζ) (specified in Theorem 4.14) to the population

of customers.
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2. With common knowledge of the mechanism (π∗, ζ), every consumer i reports her type θi to

the supplier, as it is a dominant strategy to do so under the proposed mechanism.

3. The price bundle is set to p = ζ(x∗), where x∗ = d(θ,ϕ∗) is the truth-telling aggregate

demand bundle.

4. Each consumer i receives an expected payoff of

E
{
Uθi

(
ωπ

∗
k,i(x

∗,a∗)
)}
− p>a∗,

where a∗ = ϕ∗i (θi) is the truth-telling action of consumer i defined in Eq. (4.2).

It is straightforward to see that the resulting quantity-price pair (x∗,p) is social welfare maximizing

(cf. the proof of Corollary 4.17).

4.4.2.2 A market equilibrium approach

Another approach entails implementation of the deadline differentiated pricing scheme at a compet-

itive market equilibrium; namely, the intersection of the “supply” and “demand” curves. Theorem

4.9 indeed characterizes a supply curve. In order to define the demand curve (that specifies the

aggregate demand under a given price bundle p), we take the approach considered in the literature

on priority pricing for queuing systems [24, 26, 34, 45], where consumers react to a fixed price

bundle p (as opposed to a pricing scheme κ(·)) announced by the supplier. Given a particular

scheduling policy π (announced by the supplier), let a consumer’s strategy be a mapping from her

type and the observed price bundle to her action; then, a price bundle p and a scheduling policy π

naturally define a game among the consumer population (under the fixed scheduling policy π).

We now define the truth-telling strategy of a consumer. Given a price bundle p ∈ P and the

consumer’s type θ = (k,R, q), a truth-telling consumer would take an action of the following form:

a∗j =


q · 1{R≥pk}, j = k

0, j 6= k.
(4.18)

In other words, a truth-telling consumer requests her surplus maximizing quantity q · 1{R≥pk} to

be delivered by her true deadline k. The truth-telling strategy profile is a Nash equilibrium, if the

strategy defined in (4.18) maximizes each individual consumer’s payoff, provided that the other

consumers stick to the same strategy, and that the announced scheduling policy π is employed by

the supplier.
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Consider now the marginal cost pricing scheme ζ. It follows from Assumption 4.4.2 that, under any

price bundle defined by ζ, the aggregate demand bundle of a truth-telling consumer population is

inelastic and is given by

x∗j =
∑

θ=(k,R,q)∈Θ

q · 1{j=k}ρ(θ), j = 1, . . . , N. (4.19)

This follows from the property that ζk(x) ≤ c0 ≤ R for all (k,R, q) ∈ Θ and x ∈ RN+ . Namely, the

price associated with every deadline k is always no greater than each consumer’s marginal utility.

With the information on the aggregate demand bundle x∗ (defined in (4.19)), a system operator

(or some other regulatory authority) can set the price bundle to be p = ζ(x∗). It is then optimal

for a (price-taking) supplier to announce a scheduling policy π∗ (cf. its definition in Theorem 4.14)

and serve the aggregate demand x∗. On the demand side, Corollary 4.17 shows that the incentive

compatibility result established in Theorem 4.14 implies that the truth-telling strategy profile is

a Nash equilibrium of the game defined by π∗ and ζ(x∗). With the information on the aggregate

demand bundle x∗, a system operator can achieve social optimality at a market equilibrium defined

as follows (cf. Corollary 4.17).

Definition 4.16 (Market equilibrium). Given the types of all consumers θ, a quantity-price pair

(x,p) constitutes a market equilibrium, if there exists a feasible scheduling policy π = (σ, φ) under

which the following two conditions holds.

1. Under the price bundle p, there exists a Nash equilibrium at which every consumer is truth-

telling, and the resulting aggregate demand bundle is x.

2. Given the price bundle p, the aggregate demand bundle x and scheduling policy π = (σ, φ)

maximize the supplier’s expected profit (cf. its expression in Eq. (4.9)). �

In Definition 4.16, the first condition ensures that under the price bundle p, the aggregate demand

(resulting from a truth-telling population) is x, and the second condition requires that given the

price bundle p, a price-taking supplier would like to employ the scheduling policy π = (σ, φ) and

supply the bundle x (i.e., supply equals demand). We will show in the following corollary that the

EDF scheduling policy π∗ = (σ∗, φ) together with the pricing scheme ζ maximize the social welfare

(the sum of aggregate consumer surplus and supplier profit) at a market equilibrium.

Corollary 4.17. Suppose that Assumptions 4.2.2-4.4.2 hold. For a given type distribution ρ, a

mechanism (σ∗, φ, ζ) maximizes the social welfare at the unique market equilibrium (x∗, ζ(x∗)).
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Here, φ ∈ Φ(σ∗) is an arbitrary feasible intra-class scheduling policy, and the aggregate demand

bundle x∗ is defined in Eq. (4.19).

Proof. Proof. Under Assumption 4.4.2, the condition in Eq. (4.17) holds for every θ ∈ Θ, and

therefore it is optimal for every consumer i to be truth-telling, provided that the price bundle is

set to be ζ(x∗), and that the other consumers are truth-telling and therefore request the aggregate

demand bundle x∗. It follows that for the game defined by the scheduling policy (σ∗, φ) and the

price bundle ζ(x∗), there exists a Nash equilibrium at which every consumer is truth-telling.

Given the price bundle ζ(x∗), the aggregate demand bundle x∗ together with the EDF scheduling

policy maximizes the supplier’s expected profit (cf. Theorem 4.9). Hence, the pair, (x∗, ζ(x∗)),

constitutes a market equilibrium. Since the supplier marginal cost never exceeds c0, the aggregate

demand (at any price bundle that represents supplier marginal cost) is inelastic, and is expressed

in Eq. (4.19). We therefore conclude the uniqueness of a market equilibrium.

It is straightforward to see that social welfare is maximized at this market equilibrium, because

under Assumption 4.4.2, it is optimal to fully serve the aggregate demand expressed in (4.19), and

further, the EDF scheduling policy σ∗ minimizes the expected cost of servicing x∗. �

With the information on consumers’ aggregate demand, the supplier can simply announce the price

bundle ζ(x), and maximize the social welfare at the competitive equilibrium (x, ζ(x)). Rigorous

treatment of the (dynamic) convergence to a competitive equilibrium dates back to the early 20th

century in the economics literature [3, 4, 20]. For example, the instantaneous adjustment process

studied in [3, 4], where the derivative of price adjustment is set equal to the aggregate excess (net)

demand under the current price, is guaranteed to converge to the efficient competitive equilibrium

characterized in Corollary 4.17.

4.5 Conclusion

To explore the flexibility of delay-tolerant electricity loads, we propose a novel deadline-differentiated

market for energy that offers discounted (per-unit) electricity prices to consumers in exchange for

their consent to defer their electric power consumption, and provides a guarantee on the aggregate

quantity of energy to be delivered by a consumer-specified deadline. We provide a full charac-

terization of the joint scheduling and pricing scheme that yields an efficient (competitive) market

equilibrium between a (price-taking) supplier and a consumer population. Somewhat surprisingly,
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we show that this efficient mechanism is incentive compatible in that every consumer would like to

reveal her true deadline to the supplier, regardless of the actions taken by other consumers.

The market we have considered in our analysis is single shot. As a natural extension, it would

be of interest to explore the dynamic analog of our formulation in which the market is cleared on

a recurrent basis. In addition, such a dynamic setting could provide the foundation on which to

explore efficient price discovery schemes.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.12

Let u be any element of U. Then u =
∑

k e
k, where ek ∈ Ek. The proof requires showing that

u ∈ B(φ2). Define ϑk(t) = (θk(t)− θkr )/bk. Since θk(0) = θkr , we have from (2.3),

ϑ̇k(t) = −akϑk(t)− ek(t), ϑk(0) = 0.

Taking a Laplace transform of the above equation, we obtain

ϑk(s) = − 1

s+ ak
ek(s).

Let ẋ(t) = −αx(t)− u(t) and x(0) = 0. Taking the Laplace transform,

x(s) = − 1

s+ α
u(s) = − 1

s+ α

∑
k

ek(s)

= −
∑
k

1

s+ α
ek(s) = −

∑
k

s+ ak

s+ α

1

s+ ak
ek(s)

=
∑
k

s+ ak

s+ α
ϑk(s) =

∑
k

(1 +
ak − α
s+ α

)ϑk(s).

Given Y (s) = H(s)U(s), we have ‖y(t)‖∞ ≤ ‖h(t)‖1‖u(t)‖∞, where y(t), h(t) and u(t) are the

inverse Laplace transforms of Y (s), H(s) and U(s) respectively. Therefore,

‖x(t)‖∞ ≤
∑
k

(1 + |1− ak

α
|)‖ϑk(t)‖∞.
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Because ek(t) ∈ Ek, ‖ϑk(t)‖∞ ≤ ∆k/bk, so that

‖x(t)‖∞ ≤
∑
k

(1 + |1− ak

α
|)∆k/bk. (A.1)

Additionally, −P ko ≤ ek(t) ≤ P km − P ko , implies that

−
∑
k

P ko ≤ u(t) ≤
∑
k

P km − P ko . (A.2)

Inequalities (A.1) and (A.2) verify that u(t) ∈ B(φ2).

A.2 Proof of Theorem 2.13

In this case, it is sufficient to show that u(t) ∈ B(φ1) implies ek(t) = βku(t) ∈ Ek. Let ẋ =

−αx− u, x(0) = 0. Now, if u(t) ∈ B(φ1), the following must hold

−n− ≤ u(t) ≤ n+, ∀ t > 0,

|x(t)| ≤ C, ∀ t > 0.

Apply power deviation ek(t) = βku(t) to each TCL unit. Define ϑk(t) = (θk(t) − θkr )/bk with

θk(0) = θkr . From (2.3),

ϑ̇k(t) = −akϑk(t)− ek(t), ϑk(0) = 0.

Taking the Laplace transform of the above equation,

ϑk(s) = − 1

s+ ak
ek(s) = − 1

s+ ak
βku(s)

= −βk s+ α

s+ ak
u(s)

s+ α
= βk(1 +

α− ak

s+ ak
)x(s),

where we have used the fact that x(s) = − 1
s+αu(s). Using the same bounds as in the proof of

Theorem 2.12,

‖ϑk(t)‖∞ ≤ βk(1 + |α− a
k

ak
|)‖x(t)‖∞

≤ βk(1 + |α− a
k

ak
|)C, ∀ t > 0.
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Since C is chosen so that βkC ≤ ∆k

bk
(

1+
∣∣∣α−ak
ak

∣∣∣) , we have |ϑk(t)| ≤ ∆k/bk or equivalently |θk(t)−θkr | ≤

∆k. Moreover βkn− ≤ P ko and βkn+ ≤ P km−P ko , ∀ k, yields −P ko ≤ βku(t) ≤ P km−P ko which shows

that ek(t) = βku(t) ∈ Ek.
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Proofs for Chapter 4

B.1 Intra-class Scheduling Policies

Formally, for a consumer i who purchases a bundle a = (a1, . . . , aN ), we let λk,i(x,a) ∈ RN+ denote

(element-wise in j) the amount of energy delivered (at period k) to consumer i so as to satisfy her

demand aj . We denote the intra-class scheduling policy by

φ = {(λ0,i, . . . ,λN−1,i) | i ∈ [0, 1]} ,

where λk,i : RN+ ×A → RN+ for all i ∈ [0, 1] and k = 0, . . . , N − 1. Given an inter-class scheduling

policy σ ∈ Σ, an intra-class scheduling policy φ is feasible if and only if it satisfies the following

constraints.

1. The intra-class scheduling policy should not deliver any supply that is allocated to class j

to consumers outside this class. That is, for each demand class j = 1, . . . , N , we have that

λjk,i(x,a) = 0 for every consumer i such that aj = 0.

2. At every period k, no energy is delivered to demand class j with j ≤ k by the feasibility of

the inter-class policy σ ∈ Σ. That is, λjk,i(x,a) = 0 for every i ∈ [0, 1], and every 1 ≤ j ≤ k ≤
N − 1.

3. The total supply allocated to demand class j at time period k must be fully utilized, i.e.∫
[0,1]

λjk,i(x,a) η(di) = µjk + νjk, ∀ 0 ≤ k < j ≤ N − 1,

77



Appendix B. Proofs for Chapter 4 78

where we use the Lebesgue integral1 (with respect to Lebesgue measure η defined on [0, 1]),

and µjk and νjk denote the amount of intermittent and firm supply allocated to demand class

j at period k, according to the inter-class policy σ.

4. Each consumer’s individual delivery commitments must be met:

∑k

t=1
at ≤ ωπk,i(x,a) ≤

∑N

t=1
at, k = 1, . . . , N,

where the total energy delivered to consumer i by deadline k is given by

ωπk,i(x,a) =
k−1∑
t=0

N∑
j=1

λjt,i(x,a). (B.1)

Notice that for any feasible inter-class scheduling policy σ ∈ Σ, it is always possible to ensure

the satisfaction of the above constraint.

We denote the feasible intra-class policy space by Φ(σ), which is parameterized by a given

inter-class policy σ ∈ Σ.

B.2 Proof of Theorem 4.6

Consider the causal scheduling policy σ∗ defined in Theorem 4.6. It is immediate to see that said

policy is feasible for all x ∈ RN+ by construction. We prove optimality of the policy σ∗ ∈ Σ(x) by

establishing a stronger result. Namely, the causal scheduling policy π∗ almost surely dominates any

non-casual policy in the metric of realized cost of firm supply. In particular, we show in Lemma

B.1 that σ∗ almost surely achieves the same cost of firm supply incurred under the optimal oracle

policy, which we now define.

Consider the oracle problem (B.2), in which supplier’s scheduling actions are chosen with the

benefit of perfect foresight. Namely, the control action at each stage is allowed to depend (non-

causally) on the entire (realized) sequence of intermittent supply s = (s0, s1, . . . , sN−1). With a

slight abuse of notation, we denote by Q(x, s,u,v) the cost incurred by any sequence of feasible

scheduling actions u = (u0, . . . ,uN−1) and v = (v0, . . . ,vN−1) under any pair (x, s). Computing

a sequence of non-causal scheduling actions that minimize the cost of firm supply amounts to solving

1Note that we have implicitly required here that λjk,i(x,a) is Lebesgue integrable with respect to i, over the interval
[0, 1].
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a deterministic linear program whose optimal value satisfies

Q(x, s,uo,vo) = min
u,v

N−1∑
k=0

c>vk subject to zk+1 = zk − uk − vk (B.2)

(uk,vk) ∈ Uk(zk, sk)

for k = 0, . . . , N − 1, where z0 = x. The optimal oracle actions (possibly non-unique) are denoted

by uo = (uo
0, . . . ,u

o
N−1) and vo = (vo

0, . . . ,v
o
N−1), which are implicitly parameterized by the pair

(x, s). It’s clear to see that the oracle problem (B.2) is feasible for any pair (x, s) ∈ RN+ × SN . We

can now state the following Lemma.

Lemma B.1. Given any aggregate demand bundle x ∈ RN+ , the causal scheduling policy σ∗ ∈ Π(x)

defined in Theorem 4.6 almost surely achieves the cost of firm supply incurred under the optimal

oracle policy. Namely,

Q(x, s,u∗,v∗) = Q(x, s,uo,vo) almost surely,

where u∗k = µ∗k(z
σ∗
k , sk) and v∗k = ν∗k(z

σ∗
k , sk) for all k = 0, . . . , N − 1.

Proof. Proof. Let (x, s) ∈ RN+ × SN . We establish the desired result by showing that any oracle

optimal schedule (uo,vo) can be inductively mapped to the EDF schedule (u∗,v∗) without causing

an increase in the corresponding cost of firm of supply. More precisely, given any oracle optimal

schedule whose first k − 1 inputs coincide with the corresponding EDF schedule, one can define a

mapping that transforms the oracle schedule into another feasible schedule (ũ, ṽ) whose first k

inputs coincide with EDF scheduling – without causing an increase in the realized cost. Namely,

Q(x, s, ũ, ṽ) = Q(x, s,uo,vo).

(Base Step). We begin by proving the base step. This will, in addition, reveal the crux of the

argument required to establish the inductive step. Consider an arbitrary oracle optimal schedule

(uo,vo) satisfying (B.2). For clarity in exposition, we restrict our analysis to those oracle policies

satisfying vj,◦k = 0 for all k < j − 1. In other words, we consider only those policies in which the

firm supply is deployed only as a last resort. This is clearly without loss of optimality, because of

linearity and time invariance of the cost criterion.

Let (u∗,v∗) denote the schedule realized under the causal EDF scheduling policy σ∗ defined in

Theorem 4.6. And let δ = u∗0 − uo
0 denote the discrepancy between the EDF and oracle schedule
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at period k = 0. Notice that 1>δ ≥ 0, as EDF scheduling either fully utilizes the available

intermittent supply s0 or completes all tasks at stage k = 0.

The Mapping. We now proceed in constructing a mapping that transforms the oracle optimal

schedule (uo,vo) into a modified feasible schedule (ũ, ṽ), whose inputs at stage k = 0 coincide with

that of EDF scheduling (i.e. ũ0 = u∗0 and ṽ0 = v∗0). And all without causing an increase in the

realized cost of firm supply. We construct such a mapping by characterizing a collection of feasible

perturbations on the oracle optimal schedule at later stages (k ≥ 1) to compensate its discrepancy

with EDF at the initial stage k = 0. More precisely, we consider perturbations of the form

ũk = uo
k + βk and ṽk = vo

k + αk,

where αk, βk ∈ RN for k = 0, . . . , N − 1. And again, because of objective linearity and time

invariance, we assume that perturbations on the firm supply allocation satisfy αjk = 0 for all

k < j− 1. In order to enforce consistency with EDF at stage k = 0, we necessarily require that the

initial perturbations satisfy β0 = δ and α1
0 = −δ1.

Feasible Mappings. Naturally, the perturbations (α,β) on the oracle optimal schedule must respect

certain constraints in order that the modified schedule (ũ, ṽ) remain feasible. In particular,

deadline constraints on demand satisfaction require that the perturbations satisfy

αjj−1 +

j−1∑
k=1

βjk = −δj and αjk = βjk = 0 (k ≥ j) (B.3)

for all tasks j = 1, . . . , N . In other words, the initial perturbation on the oracle schedule must be

compensated by equal and opposite perturbations over subsequent stages. In addition, limits on the

availability of intermittent supply at each stage are enforced by requiring that 1>βk ≤ sk−1>uo
k

for all k = 0, . . . , N − 1, while non-negativity requires that αk ≥ −vo
k and βk ≥ −uo

k for all

k = 0, . . . , N − 1. It is not difficult to see that the set of feasible perturbations is nonempty for any

pair (x, s).

Mapping the Oracle to EDF. We now establish the desired result by showing the existence of

feasible perturbations (α,β) on the oracle schedule that yield Q(x, s, ũ, ṽ) ≤ Q(x, s,uo,vo).

Consider the realized cost of firm supply incurred under any feasible perturbed schedule (ũ, ṽ). It

is straightforward to see that

Q(x, s, ũ, ṽ) = Q(x, s,uo,vo) + c0 ·
N∑
j=1

αjj−1.
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Hence, to prove the desired result, it remains to show that
∑N

j=1 α
j
j−1 ≤ 0, which implies a

nonincrease in the cost of firm supply incurred by the perturbed schedule (ũ, ṽ). We first define

two disjoint sets, ∆+ and ∆−, containing those indices where the EDF schedule at stage k = 0

either strictly exceeds or falls short of the oracle schedule in terms of its allocation of intermittent

supply to each task, respectively. More precisely,

∆+ = {1 ≤ j ≤ N | δj > 0} and ∆− = {1 ≤ j ≤ N | δj < 0}.

These sets possess the important property that ` < j for all ` ∈ ∆+ and j ∈ ∆−. Namely, the

set of all tasks belonging to ∆+ have deadlines that strictly precede the deadlines of those tasks

belonging to ∆−. By definition, those tasks ` ∈ ∆+ receive a strict increase in their allocation of

intermittent supply under the perturbed schedule (relative to the oracle schedule) at stage k = 0.

Thus, in order that the perturbed schedule remains feasible according to constraint (B.3), this

initial increase in supply must be countered by an equivalent decrease in the allocation of supply

to those tasks ` ∈ ∆+ at later stages k ≥ 1. The opposite is true for those tasks belonging to ∆−.

Accordingly, for those tasks ` ∈ ∆+, we consider feasible reductions on their allocation of firm

supply of the form

α``−1 = −min
{
δ`, v`,◦`−1

}
∀ ` ∈ ∆+. (B.4)

In other words, the initial increase in the allocation of intermittent supply to task ` ∈ ∆+ is

compensated by the maximum feasible decrease in said task’s allocation of firm supply. It follows

readily that α``−1 ≤ 0 for all ` ∈ ∆+ as both terms, over which the minimization is taken in (B.4),

are nonnegative; a fact that will later prove useful. And for those tasks m /∈ ∆+ ∪ ∆− (where

the oracle schedule agrees with EDF), it suffices to leave the oracle schedule unchanged. Namely,

βm0 = βm1 = · · · = βmm−1 = αmm−1 = 0 for all m /∈ ∆+ ∪∆−.

We now proceed to establish the desired bound. Summing the demand satisfaction constraint (B.3)

over j ∈ ∆−, we have that

∑
j∈∆−

αjj−1 = −
∑
j∈∆−

δj −
∑
j∈∆−

j−1∑
k=1

βjk. (B.5)
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One can show that there exists a collection of feasible perturbations (α,β) on the oracle schedule

(consistent with the previous restrictions), which satisfy

∑
j∈∆−

j−1∑
k=1

βjk = min

− ∑
j∈∆−

δj, −
∑
`∈∆+

`−1∑
k=1

β`k

 . (B.6)

Equation (B.6) can be interpreted as implying the existence of feasible perturbations that enable

the full transfer of the excess in intermittent supply derived from those tasks ` ∈ ∆+ to cover the

aggregate shortfall in supply incurred by those tasks j ∈ ∆−. Such perturbations exist, as ` < j

for all ` ∈ ∆+ and j ∈ ∆−. In other words, any excess in supply derived from those tasks ` ∈ ∆+

can always be transferred to those tasks j ∈ ∆−, as all of the tasks belonging to ∆+ have deadlines

that strictly precede the deadlines of those tasks belonging to ∆−.

Combining Eqs. (B.5) and (B.6), we have

∑
j∈∆−

αjj−1 =

(
−
∑

j∈∆−
δj +

∑
`∈∆+

∑`−1

k=1
β`k

)+

=
(
−1>δ −

∑
`∈∆+

α``−1

)+

≤
(
−
∑

`∈∆+
α``−1

)+

= −
∑

`∈∆+
α``−1,

where the first equality is an application of the identity (x− y)+ = x−min{x, y} for all x, y ∈ R,

while the second equality follows from a direct substitution of the second term in the parentheses

according to Eq. (B.3). And the inequality follows from the fact that 1>δ ≥ 0. The final equality

is a consequence of the previously established property of the chosen perturbations that α``−1 ≤ 0

for all ` ∈ ∆+. It follows immediately that

N∑
j=1

αjj−1 ≤ 0,

as we’ve taken αmm−1 = 0 for all m /∈ ∆+ ∪ ∆−. It follows that, under the proposed modified

schedule (ũ, ṽ), we have Q(x, s, ũ, ṽ) ≤ Q(x, s,uo,vo), where we necessarily have equality by

optimality of the oracle schedule. This establishes the base step.

(Induction Step). For the induction step, we consider an oracle optimal schedule whose first k− 1

inputs coincide with the corresponding EDF schedule. Namely, uo = (u∗0, . . . ,u
∗
k−1,u

o
k, . . . ,u

o
N−1)
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and vo = (v∗0, . . . ,v
∗
k−1,v

o
k, . . . ,v

o
N−1). Proceeding along a path of logic identical to that of

the base step, one can readily construct a mapping that transforms the oracle schedule into

another feasible schedule (ũ, ṽ) whose first k inputs coincide with the EDF schedule – say,

ũ = (u∗0, . . . ,u
∗
k, ũk+1, . . . , ũN−1) and ṽ = (v∗0, . . . ,v

∗
k, ṽk+1, . . . , ṽN−1) – without causing an

increase in the cost of firm supply. Upon realizing that one necessarily has 1>(u∗k − u◦k) ≥ 0, the

construction of such a mapping follows from a direct application of the base step argument to the

truncated oracle schedule (uo
k, . . . ,u

o
N−1) and (vo

k, . . . ,v
o
N−1).

B.3 Proof of Lemma 4.8

We first establish the simplified form of Q∗ in Eq. (4.13). For notational simplicity, we denote the

sequence of optimal inputs by u∗k = µ∗k(zk, sk) and v∗k = ν∗k(zk, sk) for k = 0, . . . , N − 1. Under the

optimal scheduling policy, firm supply is deployed only as a last resort to ensure task satisfaction.

It follows that

Q∗(x) = c0 ·
N∑
k=1

E
{
vk,∗k−1

}
.

To establish the desired result, it suffices to show that vk,∗k−1 = −ξ−k . First, define the quantity

δk =

k−1∑
j=0

sj −
k∑
`=1

`−1∑
j=0

u`,∗j ∀ k = 1, . . . , N,

which denotes the maximum amount of intermittent supply available to demand class k + 1 across

the first k time periods under a sequence of EDF allocations u∗0, . . . ,u
∗
k−1. Clearly, we have that

δk ≥ 0 for all k, given feasibility of the allocations u∗0, . . . ,u
∗
k−1 under the intermittent supply

availability constraints. One can readily show via an inductive argument that

ξk = δk − vk,∗k−1 ∀ k = 1, . . . , N.

Using this characterization of the residual process ξ, we have that

δk > 0 =⇒ vk,∗k−1 = 0 =⇒ ξ−k = 0,

δk = 0 =⇒ vk,∗k−1 ≥ 0 =⇒ ξ−k = −vk,∗k−1,

which yields the desired result that ξ−k = − vk,∗k−1 and establishes the form of Q∗ in Eq. (4.13).
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We now establish convexity and differentiability of the expected recourse cost Q∗(x). First, recall

that Lemma B.1 enables the expression of the expected recourse cost as Q∗(x) = E{Q(x, s,uo,vo)},
where Q(x, s,uo,vo) denotes the optimal value of a linear program parameterized linearly by (x, s).

It follows that Q(x, s,uo,vo) is a piecewise affine convex function in (x, s) [19]. Convexity of Q∗(x)

follows, as expectation (take with respect to s) preserves the convexity of Q(x, s,uo,vo) in x. And,

given our prior Assumption 4.3.1 that the random process s have an absolutely continuous joint

distribution with compact support, differentiability of Q∗(x) over (0,∞)N follows immediately from

Proposition 2.9 in [39].

B.4 Proof of Theorem 4.14

Let x be the aggregate demand of the other consumers (excluding i). Suppose that the supplier uses

the EDF (inter-class scheduling) policy σ∗, and an arbitrary intra-class scheduling policy φ ∈ Φ(σ∗).

We let π∗ = (σ∗, φ). We consider a consumer i of some type θi = (k,R, q) such that c0 ≤ R. We

will show that the consumer, who faces an arbitrary aggregate demand bundle requested by other

consumers x, would like to take the truth-telling action defined in Eq. (4.2). For the rest of this

proof, we will use p = {pk}Nk=1 to denote the price bundle induced by the pricing scheme ζ (cf. its

definition in Eq. (4.15)), at the aggregate demand x.

If consumer i is truth-telling, she will request a quantity q before deadline k, and receive an expected

payoff of

V π∗
i (θi, ϕ

∗
i ,x, ζ) = U(q)− qpk

= qR− qc0

[
P(ξk ≤ 0) +

∑N

t=k+1
P(ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0)

]
.

(B.7)

Since the optimal price schedule is nonincreasing in deadline, and demand is guaranteed to be

met before the requested deadline, the consumer has no incentive to request a positive amount of

electricity at some period t that is earlier than k. We can therefore assume that consumer i takes

an action a′ = ϕ′i(θi) such that

a′t = 0, t = 0, . . . , k − 1.

Since the consumer cannot increase its expected payoff (compared to being truth-telling) by re-

porting a′k ≥ q, we focus on the case where a′k < q. We first write the consumer’s expected payoff
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(achieved by the action a′) as

V π∗
i (θi, ϕ

′
i,x, ζ) = E

{
Uθ

(
ωπ

∗
k,i(x,a

′)
)}
− pka′k −

N∑
t=k+1

pta
′
t.

Showing that V π∗
i (θi, ϕ

′
i,x, ζ) is no more than the expected payoff in (B.7) is equivalent to

Rq − (q − a′k)c0

[
P(ξk ≤ 0) +

∑N

t=k+1
P(ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0)

]
≥ E

{
Uθ

(
ωπ

∗
k,i(x,a

′)
)}
−
∑N

t=k+1
pta
′
t.

(B.8)

We will derive an upper bound on the right hand side of (B.8), and show that this upper bound

cannot exceed the left hand side of (B.8). For notational convenience, we define

ηt = {ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0}

for all t = k + 1, . . . , N − 1 and

ηk = {ξk ≤ 0}, ηN = {ξk > 0, . . . , ξN−1 > 0}.

Note that these N − k + 1 events are mutually disjoint. Further, it is straightforward to see that

ξk ≤ 0 implies that ωπk,i(x,a
′) = a′k. While, on the other hand, ξk > 0 implies that one of the

(mutually disjoint) events {ηt}Nt=k+1 must occur, i.e.,

1 = P
(⋃N

t=k
ηt

)
=

N∑
t=k

P(ηt). (B.9)

Under the event ηt, the amount of energy delivered by the EDF scheduling policy before her true

deadline k, ωπ
∗

k,i(x,a
′), cannot exceed

∑t
τ=k a

′
τ , for t = k, . . . , N . It follows from Assumption 4.2.1

that

Rq − Uθ (x) ≥ R (q − x)+ , ∀ x ≥ 0,

where (·)+ = max{·, 0}. We then have

Rq − E
{
Uθ

(
ωπ

∗
k,i(x,a

′)
)}
≥ R

∑N

t=k
P(ηt) ·

(
q −

∑t

τ=k
a′τ

)+

. (B.10)

We now argue that the right hand side of (B.10) is minimized at some vector ã such that
∑N

t=k ãt ≤
q. To see this, suppose that

∑N
t=k a

′
t > q. Let T be the smallest t such that

∑t
m=k a

′
m > q. We
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define an alternative vector ã

ãt = a′t, t ≤ T − 1, ãT = q −
T−1∑
m=k

a′m, (B.11)

and ãt = 0, for every t > T . We have
∑N

t=k ãt = q, and

∑N

t=k
P(ηt) ·

(
q −

∑t

τ=k
a′τ

)+

=
∑N

t=k
P(ηt) ·

(
q −

∑t

τ=k
ãτ

)+

.

Note that if
∑N

t=k a
′
t ≤ q, then ã = a′. To validate (B.8), it suffices to show that for any vector ã

defined in (B.11),

R
∑N

t=k
P(ηt) ·

(
q −

∑t

τ=k
ãτ

)
≥ (q − ãk)c0

[
P(ξk ≤ 0) +

∑N

t=k+1
P(ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0)

]
−
∑N

t=k+1
ptãt,

(B.12)

where the left hand side is a lower bound on the loss of expected utility due to the non-truthful action

ã (cf. the inequality in (B.10)), and the right hand side is the difference between the payment under

the truth-telling action and the action ã. We will prove the following inequality that is equivalent

to (B.12)

R
∑N

t=k
P(ηt) ·

(
q −

∑t

τ=k
ãτ

)
= R(q − ãk)−R

∑N

t=k+1

(
P(ηt) ·

∑t

τ=k+1
ãτ

)
= R(q − ãk)−R

∑N

t=k+1

(
ãt ·
∑N

τ=m
P(ηm)

)
≥ (q − ãk)c0

[
P(ξk ≤ 0) +

∑N

t=k+1
P(ξk > 0, . . . , ξt−1 > 0, ξt ≤ 0)

]
−
∑N

t=k+1
ptãt,

(B.13)

where the first equality follows from (B.9), and the second equality is obtained by rearranging

terms.

It follows from (4.15) that for t = k + 1, . . . , N,

ãtpt = ãtc0

N∑
m=t

P(ξt > 0, . . . , ξm−1 > 0, ξm ≤ 0) ≥ ãtc0

N∑
m=t

P(ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0).

(B.14)
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We then have, for t = k + 1, . . . , N ,

Rãt
∑N

m=t
P(ηm)− ãtpt

= Rãt

(
1− P(ξk ≤ 0)−

∑t−1

m=k+1
P(ηm)

)
− ãtpt

≤ Rãt
(

1− P(ξk ≤ 0)−
∑t−1

m=k+1
P(ηm)

)
− ãtc0

∑N

m=t
P(ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0)

≤ Rãt (1− P(ξk ≤ 0))− ãtc0

∑N

m=k+1
P(ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0)

≤ Rãt − ãtc0

(
P(ξk ≤ 0) +

∑N

m=k+1
P(ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0)

)
.

(B.15)

Here, the first inequality follows from (B.14); the second inequality is true, because R ≥ c0 and

ηm = {ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0}, for m = k + 1, . . . , t − 1; the last inequality follows from

R ≥ c0. For any vector ã with
∑N

t=k ãt ≤ q, from (B.15) we have

∑N

t=k+1

(
−ptãt +Rãt

∑N

m=t
P(ηm)

)
≤
∑N

t=k+1
ãt

[
R− c0

(
P(ξk ≤ 0) +

∑N

m=k+1
P(ξk > 0, . . . , ξm−1 > 0, ξm ≤ 0)

)]
.

(B.16)

Since R ≥ c0, the right hand side of (B.16) is nondecreasing in
∑N

t=k+1 ãt. The desired result in

(B.13) follows from the fact
∑N

t=k+1 ãt ≤ q − ãk. Since the preceding analysis holds for any action

a′ and any aggregate demand bundle x, we conclude that it is a dominant strategy for consumer i

to be truth-telling, i.e., the pricing scheme (4.15) is incentive compatible, in the sense of Definition

4.12.
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