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Abstract—We consider the decentralized control of radial
distribution systems with controllable photovoltaic inverters and
storage devices. For such systems, we consider the problem of
designing controllers that minimize the expected cost of meet-
ing demand, while respecting distribution system and resource
constraints. Employing a linear approximation of the branch
flow model, we formulate this problem as the design of a
decentralized disturbance-feedback controller that minimizes the
expected value of a convex quadratic cost function, subject to
convex quadratic constraints on the state and input. As such
problems are, in general, computationally intractable, we derive
an inner approximation to this decentralized control problem,
which enables the efficient computation of an affine control
policy via the solution of a conic program. As affine policies
are, in general, suboptimal for the systems considered, we
provide an efficient method to bound their suboptimality via
the solution of another conic program. A case study of a 12 kV
radial distribution feeder demonstrates that decentralized affine
controllers can perform close to optimal.

I. INTROUDCTION

The increasing penetration of distributed and renewable en-
ergy resources introduces challenges to the distribution system,
including rapid fluctuations in bus voltage magnitudes, reverse
power flows at substations, and deteriorated power quality,
due to the intermittency of supply from renewables. However,
traditional techniques for distribution system management,
including the deployment of on-load tap changing (OLTC)
transformers and the installation of shunt capacitors, cannot
effectively deal with the rapid variation in power supply from
renewable resources [1]. In this paper, we aim to address
such challenges by developing a systematic approach to the
design of decentralized controllers for networks with a high
penetration of distributed solar and energy storage resources,
in order to minimize the expected cost of meeting demand,
while respecting network and resource constraints.

Related Work: Although current industry standards require
that photovoltaic (PV) inverters operate at a unity power factor
[2], the latent reactive power capacity of PV inverters can be
utilized to regulate voltage profiles [3]–[8] and reduce active
power losses [9]–[15] in distribution networks. A large fraction
of the litearture on the reactive power management of PV
inverters seeks to solve an optimal power flow (OPF) prob-
lem [3]–[13], whose solution determines the reactive power
injections of PV inverters in real time. Because of the fast
changes in demand and active power supply from PV inverters,
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such OPF problems are solved repeatedly on a fast time scale
(e.g., every minute). In the presence of a large number of
PV inverters, the sheer size of the resulting OPF problem
that needs to be solved, and the communication requirements
it entails, give rise to the need for distributed optimization
methods [5]–[12]. Additionally, several recent papers have
attempted to explicitly treat uncertainty in renewable supply
and demand by leveraging on methods grounded in stochastic
optimization [14], [15].

Apart from controlling the reactive power injection from PV
inverters, one can manage the sequence of power injections
of distributed storage devices (e.g. electric vehicles or battery
storage devices) to mitigate voltage fluctuations or reduce dis-
tribution losses [1], [16]–[19]. Since control inputs to storage
devices are coupled across time, the problem of managing
their charging profile amounts to a multi-period stochastic
control problem. In the presence of network constraints and
uncertainty in demand and renewable supply, the calculation
of the optimal control policy is, in general, computationally
intractable. The development of computational methods to
enable the tractable calculation of feasible control policies with
computable bounds on their suboptimality is therefore desired.

Contribution: The setting we consider entails the decentral-
ized control of distributed energy resources spread throughout
a radial distribution network, subject to uncertainty in demand
and renewable supply. Our objective is to minimize the ex-
pected amount of active power supplied at the substation to
meet the demand, subject to network and resource constraints.
Such an objective function is equivalent to minimizing the sum
of expected active power losses and terminal storage states.
The determination of an optimal decentralized control policy
in such a setting is, in general, intractable. Our primary contri-
butions are two-fold. First, we develop a convex programming
approach to the design of decentralized, affine disturbance-
feedback controllers. Second, as such control policies are, in
general, suboptimal, we provide a technique to bound their
suboptimality through the solution of another convex program.
We verify that the decentralized affine policies we derive are
close to optimal for the family of problem instances considered
in our case study.

Organization: This paper is organized as follows. Section
II introduces the distribution network and energy resource
models. Section III formally states the decentralized control
design problem. Section IV describes an approach to the
computation of decentralized affine control policies via convex
programming. Section V describes an approach to the compu-
tation of bounds on the suboptimality incurred by these affine
control policies via convex programming. Section VI presents
a numerical study of a 12 kV radial distribution feeder.



Notation: Let R denote the set of real numbers. Denote the
transpose of vector x ∈ Rn by x′. Given a process {x(t)} in-
dexed by t = 0, . . . , T−1, we denote by xt = (x(0), . . . , x(t))
its history up until and including time t. We denote the trace
of a square matrix A by Tr (A). We denote by K a proper cone
(i.e., convex, closed and pointed with an nonempty interior).
Let K∗ denote its dual cone. For a matrix A of appropriate
dimension, A �K 0 denotes its columnwise inclusion in K.

II. NETWORK AND RESOURCE MODELS

A. Branch Flow Model and its Linear Approximation

Consider a radial distribution network whose topology is
described by a rooted tree G = (V, E), where V = {0, 1, .., n}
denotes its set of (nodes) buses, and E its set of (directed
edges) distribution lines. In particular, bus 0 is defined as the
root of the network, and represents the substation that connects
to the external power system. Each directed distribution line
admits the natural orientation, i.e., away from the root. For
each distribution line (i, j) ∈ E , we denote by rij + ixij
its impedance. In addition, define Iij as the complex current
flowing from bus i to j, and pij + iqij as the complex power
flowing from bus i to j. For each bus i ∈ V , Vi denotes its
complex voltage, and pi + iqi is the complex power injection
at said bus. We assume that the complex voltage V0 at the
substation is fixed and known.

We employ the branch flow model proposed in [20], [21]
to describe the steady-state, single-phase AC power flow
equations associated with this radial distribution network. For
each bus j = 1, . . . , n, and its unique parent i ∈ V , we have

−pj = pij − rij`ij −
∑

k:(j,k)∈E

pjk, (1)

−qj = qij − xij`ij −
∑

k:(j,k)∈E

qjk, (2)

v2j = v2i − 2(rijpij + xijqij) + (r2ij + x2ij)`ij , (3)

`ij = (p2ij + q2ij)/v
2
i , (4)

where `ij = |Iij |2 and vi = |Vi|. We note that the branch flow
model is well defined only for radial distribution networks, as
we require that each bus j (excluding the substation) have a
unique parent i ∈ V .

For the remainder of the paper, we consider a linear ap-
proximation of the branch flow model (1)-(4) based on the
Simplified Distflow method in [22]. To derive this approxima-
tion, we assume that `ij = 0 for all (i, j) ∈ E , as the active and
reactive power losses on distribution lines are considered small
relative to the power flows. According to [4], [23], such an
approximation tends to introduces a relative model error of 1-
5% for practical distribution networks. Under this assumption,
Eq. (1)-(3) can be reformulated as

−pj = pij −
∑

k:(j,k)∈E

pjk, (5)

−qj = qij −
∑

k:(j,k)∈E

qjk, (6)

v2j = v2i − 2(rijpij + xijqij). (7)

The linearized branch flow Eq. (5)-(7) can be written more
compactly as

v2 = Rp+Xq + v201. (8)

Here, v2 = (v21 , .., v
2
n), p = (p1, .., pn), and q = (q1, .., qn)

denote the vectors of squared bus voltage magnitudes, real
power injections, and reactive power injections, respectively,
and 1 = (1, .., 1) is a vector of all ones in Rn. The matrices
R,X ∈ Rn×n are defined according to

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk,

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk,

where Pi ⊂ E is defined as the set of edges on the unique
path from bus 0 to i.

For the remainder of this paper, we consider the control
of photovoltaic (PV) inverters and storage devices in the
distribution network over discrete time periods indexed by
t = 0, .., T − 1. We require the vector of voltage magnitudes
v(t) = (v1(t), .., vn(t)) ∈ Rn at each time t to satisfy

v ≤ v(t) ≤ v, (9)

where the allowable range of voltage magnitudes is defined
by v, v ∈ Rn.

B. Energy Storage Model

We consider a distribution network consisting of n perfectly
efficient energy storage devices, where each bus i (excluding
the substation) is assumed to have an energy storage capacity
of bi ∈ R. The dynamics of storage device i is described by

xi(t+ 1) = xi(t)− pSi (t), t = 0, . . . , T − 1, (10)

where the state xi(t) ∈ R denotes the amount of energy stored
in storage device i just preceding period t, and pSi (t) ∈ R
denotes the amount of energy extracted from storage device i
during period t. We assume that the initial energy storage state
xi(0) is fixed and known. We impose energy storage state and
input constraints of the form

0 ≤ xi(t) ≤ bi, t = 0, . . . , T (11)

pS
i
≤ pSi (t) ≤ pSi , t = 0, . . . , T − 1. (12)

for i = 1, .., n. Here, pS
i
, pSi ∈ R define the range of allowable

inputs for storage device i at each time period t.

C. The Photovoltaic Inverter Model

We assume that, in addition to energy storage, each bus
i (excluding the substation) has a photovoltaic (PV) inverter
whose reactive power injection can be controlled. For each
bus i = 1, . . . , n, we denote by ξIi (t) ∈ R and qIi (t) ∈ R the
active and reactive power injection from the PV inverter at time
t, respectively. We model ξIi (t) as a discrete-time stochastic
process, whose precise specification is presented in Section



II-E. Additionally, we require that the reactive power injections
respect capacity constraints of the form∣∣qIi (t)

∣∣ ≤√sIi
2 − ξIi (t)

2
, i = 1, . . . , n, (13)

for t = 0, . . . , T − 1, where sIi ∈ R is the apparent power
capacity of inverter i. Clearly, it must hold that ξIi (t) ≤ sIi .

D. The Load Model

Each bus in the distribution network is assumed to have a
constant power load, which we will treat as a discrete-time
stochastic process. Accordingly, we denote by ξpi (t) ∈ R and
ξqi (t) ∈ R the active and reactive power demand, respectively,
at bus i and time t. It follows that the nodal active and reactive
power balance equations can be expressed as

pi(t) = pSi (t) + ξIi (t)− ξpi (t), (14)

qi(t) = qIi (t)− ξqi (t). (15)

where pi(t) ∈ R and qi(t) ∈ R denote the active and reactive
power injections, respectively, at each bus i = 1, . . . , n and
time period t = 0, . . . , T − 1.

E. The Uncertainty Model

We model the active power injection of PV inverters, and the
active and reactive power demand as discrete-time stochastic
processes. Accordingly, we associate with each bus i a distur-
bance process defined as ξi(t) = (ξpi (t), ξqi (t), ξIi (t)) ∈ R3.
We define the full disturbance trajectory as

ξ = (1, ξ(0), . . . , ξ(T − 1)) ∈ RNξ , Nξ = 1 + 3nT, (16)

where ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ R3n for each time t.
Note that, in our specification of the disturbance trajectory
ξ, we have included a constant scalar as its initial component.
Such notational convention will prove useful in simplifying
the specification of affine control policies in the sequel.

We assume that the disturbance trajectory ξ has support Ξ
that is a nonempty and compact subset of RNξ , representable
by

Ξ = {ξ ∈ RNξ | ξ1 = 1 and Wξ �K 0},

where the matrix W ∈ R`×Nξ is known. Because of the com-
pactness of Ξ, the second-order moment matrix M = E (ξξ′) ,
is finite-valued. Without loss of generality, we further assume
that M is positive definite. We emphasize that our specification
of the disturbance trajectory ξ captures a large family of
disturbance processes, including those whose support can be
described as the intersection of polytopes and ellipsoids.

III. DECENTRALIZED CONTROL DESIGN

A. State Space Description

In what follows, we build on the individual resource models
developed in Section II to develop a discrete-time state space
model describing the collective dynamics of the distribution
network. The system consists of n subsystems, where each
subsystem i = 1, .., n represents the collection of resources
connected to bus i. For each subsystem i, we let the energy

storage state xi(t) be its state at time t, and define its input
according to

ui(t) =

[
pSi (t)

qIi (t)

]
.

The state equation for each subsystem i is given by Eq. (10).
We define the full system state and input at time t by x(t) =

(x1(t), .., xn(t)) ∈ Rn and u(t) = (u1(t), .., un(t)) ∈ R2n.
The full system equation admits the following representation

x(t+ 1) = x(t) +Bu(t).

Here, the matrix B is given by

B = In ⊗
[
−1 0

]
,

where ⊗ denotes the Kronecker product operator. The initial
system state x(0) is assumed fixed and known. The full system
state and input trajectories, and the initial system state x(0)
are related according to

x = Ax(0) + Bu, (17)

where x and u represent the state and input trajectories,
respectively1. They are defined according to

x = (x(0), . . . , x(T )) ∈ RNx , Nx = n(T + 1),

u = (u(0), . . . , u(T − 1)) ∈ RNu , Nu = 2nT.

B. Decentralized Control Design

At each time t, each subsystem i must determine its
local control input based on its available information. In this
paper, we restrict ourselves to fully decentralized disturbance-
feedback control policies. Namely, for each subsystem i, its
control input at time t is restricted to be of the form

ui(t) = γi(ξ
t
i , t),

where γi(·, t) is a causal measurable function of the local
disturbance history. We define the local control policy for
subsystem i as γi = (γi(·, 0), .., γi(·, T − 1)). We refer to
the collection of local control policies γ = (γ1, .., γn) as the
decentralized control policy, and define Γ as the family of all
admissible decentralized control policies.

Our objective is to minimize the expected cost of meeting
demand over the distribution network, which we measure
according to the expected amount of active power supplied
at the substation. Within the context of our formulation, this
is equivalent to minimizing the sum of expected active power
losses and terminal storage states. In a similar spirit to [3],
[22], we approximate the active power loss on line (i, j) ∈ E
according to

δpij(t) = rij(pij(t)
2 + qij(t)

2)/v0(t)2,

for t = 0, . . . , T − 1. Implicit in this approximation is the
assumption that the bus voltage magnitudes are uniform across
the network. By Eq. (5)-(6) and (14)-(15), one can write the
total active power losses over time periods t = 0, . . . , T − 1

1Due to space constraints, the matrices (A,B) are specified in the Appendix
of [24].



as a quadratic function of the vector (u, ξ). Namely, one can
construct matrices Lu ∈ R2nT×Nu , Lξ ∈ R2nT×Nξ , and a
positive definite diagonal matrix Σ ∈ R2nT×2nT , such that

(Luu+ Lξξ)
′Σ(Luu+ Lξξ) =

T−1∑
t=0

∑
(i,j)∈E

δpij(t). (18)

The sum of terminal storage states of all storage devices can be
written as a linear function of the state trajectory x. Namely,
one can construct a vector c ∈ RNx , such that

c′x =

n∑
i=1

xi(T ). (19)

Henceforth, we define the expected cost associated with a
decentralized control policy γ ∈ Γ according to

J(γ) = Eγ [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)] , (20)

where expectation is taken with respect to the joint distribution
on (x, u, ξ) induced by the control policy γ. 2 We define the
optimal decentralized control problem as

minimize J(γ)

subject to γ ∈ Γ

x = Ax(0) + Bu
u = γ(ξ)

x ∈ X , u ∈ U(ξ)

∀ξ ∈ Ξ,

(21)

where the set of feasible states X is defined by inequality (11),
and the set of feasible control inputs U(ξ) is defined according
to inequalities (9) and (12)-(13). We denote the optimal value
of problem (21) by Jopt.

IV. DESIGN OF AFFINE CONTROL POLICIES

Problem (21) amounts to an infinite dimensional convex
program, and is, in general, computationally intractable. We
therefore resort to approximation by restricting the space
of admissible control policies to those which are affine in
the disturbance. In addition, we construct a polyhedral inner
approximation of the feasible region of problem (21). In doing
so, one can apply Proposition 3 in [25] to compute the optimal
affine control policy for the resulting inner approximation
through solution of a finite-dimensional conic program.

A. A Polyhedral Inner Approximation of Constraints

We derive a polyhedral inner approximation of the convex
set U(ξ) by replacing the convex quadratic constraint (13) with
the following linear constraint:∣∣qIi (t)

∣∣ ≤ qIi (t). (22)

Here, the deterministic constant qIi (t) is defined according to

qIi (t) = inf

{√
sIi

2 − ξIi (t)
2
∣∣∣∣ ξ ∈ Ξ

}
.

Although such an inner approximation may seem conservative,
it has been observed to result in a small loss of performance,

2Due to space constraints, the vector c, and the matrices Lu, Lξ , and Σ
are specified in the Appendix of [24].

as measured by the objective function considered in this paper.
See [3], [15] for a more detailed discussion on such issues.
Moreover, in Section V, we develop a technique to bound the
loss of optimality incurred by this inner approximation. This
loss of optimality is shown to be small for the case study
considered in this paper.

Inequalities (9), (11)-(12), and (22) define a collection of
linear constraints on the state, input, and disturbance trajecto-
ries. We represent them according to

Fxx+ Fuu+ Fξξ ≤ 0, ∀ξ ∈ Ξ,

where the matrices Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , Fξ ∈
Rm×Nξ can be specified according to the underlying problem
data. The following problem is an inner approximation of
problem (21):

minimize Eγ [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)]

subject to γ ∈ Γ

Fxx+ Fuu+ Fξξ ≤ 0

x = Ax(0) + Bu
u = γ(ξ)

∀ ξ ∈ Ξ. (23)

Although convex, problem (23) is an infinite-dimensional
robust program. Computing its optimal solution is intractable,
in general. In what follows, we further approximate problem
(23) from within as a finite dimensional conic program. In
deriving this approximation, we restrict the space of admissible
controllers to be affine in the disturbance.

B. Control Design via Convex Optimization

Before proceeding, we define the subspace of admissible
decentralized affine control policies according to

S =
{
Q ∈ RNu×Nξ

∣∣Q ∈ Γ
}
,

where Q ∈ Γ requires that the linear operator Q : RNξ →
RNu respects the information structure encoded in the set of
admissible decentralized control policies Γ. We restrict the
space of admissible controllers to be of the form u = Qξ,
where Q ∈ S. The optimal affine control policy for problem
(23) can be computed according to Proposition 1.

Proposition 1. An optimal affine control policy for problem
(23) is given by the optimal solution of the following opti-
mization problem:

minimize Tr
((
Q′L′uΣLuQ+

(
2L′ξΣLu + e1c

′B
)
Q

+ L′ξΣLξ
)
M
)

+ c′Ax(0)

subject to Q ∈ S
Z ∈ Rm×Nξ , Π ∈ R`×m, ν ∈ Rm

+

(Fu + FxB)Q+ FxAx(0)e′1 + Fξ + Z = 0,

Z = νe′1 + Π′W,

Π �K∗ 0,
(24)

where e1 = (1, 0, . . . , 0) is a unit vector in RNξ . Moreover,
the optimal value of problem (24) equals the cost incurred by
the optimal affine control policy for problem (23).



We denote the optimal value of problem (24) by J in. It
clearly stands as an upper bound on the optimal value of
problem (21); namely, Jopt ≤ J in.

V. A LOWER BOUND ON PERFORMANCE

Affine policies computed according to Proposition 1 are,
in general, suboptimal. In this section, we bound the subop-
timality incurred by such policies through the derivation of a
lower bound on the optimal value of problem (21). In doing
this, we construct an outer polyhedral approximation of the
feasible region of problem (21), and apply Proposition 4 in
[25] to derive a lower bound on the optimal value of this
outer approximation.

For each i = 1, . . . , n, the following linear inequality is an
outer approximation of the convex quadratic constraint (13):∣∣qIi (t)

∣∣ ≤ √2sIi − ξIi (t). (25)

Inequality (25), in combination with inequalities (9) and (11)-
(12), define a collection of linear constraints on the state, input,
and disturbance trajectories, which we denote by

Fxx+ Fuu+ Fξξ ≤ 0, ∀ξ ∈ Ξ.

The matrices Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , Fξ ∈ Rm×Nξ

can be easily specified according to the underlying problem
data. With this outer approximation in hand, we can apply
Proposition 4 in [25] to establish a lower bound on the optimal
value of the original decentralized control design problem (21).
We first require a technical assumption on the disturbance
trajectory ξ.

Assumption 1. For each time t = 0, . . . , T − 1, there exist
matrices Ht

1, . . . ,H
t
n, and Ht of compatible dimensions, such

that

E
[
ξ
∣∣ξt ] = Ht

[
1

ξt

]
and E

[
ξt
∣∣ξti ] = Ht

i

[
1

ξti

]
for all i = 1, . . . , n and ξ ∈ Ξ.

Although Assumption 1 seems restrictive, it is satisfied by
a large family of distributions. We refer the readers to [26],
which provides several sufficient conditions on the distribution
of ξ under which Assumption 1 is satisfied.

Proposition 2 provides a lower bound on the optimal value
of problem (21) through the solution of a conic program.

Proposition 2. Let Assumption 1 hold. The optimal value of
the following problem is a lower bound on the optimal value
of problem (21):

minimize Tr
((
Q′L′uΣLuQ+

(
2L′ξΣLu + e1c

′B
)
Q

+ L′ξΣLξ
)
M
)

+ c′Ax(0)

subject to Q ∈ S, Z ∈ Rm×Nξ

(Fu + FxB)Q+ FxAx(0)e′1 + Fξ + Z = 0,

WMZ ′ �K 0,

e′1MZ ′ ≥ 0,
(26)

where e1 = (1, 0, . . . , 0) is a unit vector in RNξ .

We denote the optimal value of problem (26) by Jout. It
stands as a lower bound on the optimal value of problem (21).
In summary, we have Jout ≤ Jopt ≤ J in, where J in and Jout

are calculated according to Propositions 1 and 2, respectively.
A small gap between J in and Jout implies that affine policies
are close to optimal for the underlying problem instance.

VI. CASE STUDY

We consider the control of distributed energy resources in
a 12 kV radial distribution feeder, similar to the network
considered in [8]. In what follows, we provide a brief de-
scription of the problem instance considered3. Apart from the
substation, the distribution feeder consists of n = 14 buses,
whose schematic diagram is given in Fig. 1. The voltage
magnitude at bus 0 is fixed at v0 = 1 per-unit (p.u.), and
we require the voltage magnitude at each bus to live in the
range [0.95, 1.05]. We operate the system over a finite time
horizon of T = 24 hours, beginning at 12am.

Bus 0 1 2 n− 1 n

Fig. 1: Schematic diagram of a 12 kV radial distribution feeder
with n+ 1 buses.

We assume that only buses 4 and 8 have storage devices
and PV inverters installed. Each PV inverter (i = 4, 8) has
an active power capacity of θ MW, and an apparent power
capacity of sIi = 1.25θ MVA. The collection of random
vectors {ξi(t)}i=1,..n, t=0,..,T−1 are assumed to be mutually
independent. This ensures that Assumption 1 is satisfied.

In Fig. 2, we plot the upper bound J in and the lower bound
Jout, as a function of the PV inverter active powwer capacity
θ ranging from θ = 0 to 2. As one might expect, the bound
on the optimality gap increases with the amount of uncertain
renewable supply in the distribution system. Despite this, the
gap is small for all values of θ considered. This reveals that
affine control policies are close to optimal.

0 0.5 1 1.5 2

 θ (MW)

0.05

0.1

0.15

0.2

Upper Bound J
in

Lower Bound J
out

Fig. 2: The above figure plots (in MWh) the upper and lower
bounds on Jopt, the optimal value of problem (21), as a
function of the PV inverter active power capacity θ.

In Fig. 3, we plot several system trajectories at bus 8 for
several independent sample paths of the disturbance process,
and their empirical confidence intervals, for θ = 2. Since θ is
large, the excessive active power supply from PV inverters can

3The exact specification of the problem data can be found in [24].



manifest in overvoltage in the distribution network. In order
to ensure satisfaction of the voltage magnitude constraints,
the optimal affine control policy results in reactive power
injections that are negatively correlated with the active power
injections from the PV inverter at bus 8. Clearly, in the absence
of such a feedback control mechanism, certain realizations of
the disturbance would have manifested in the violation of the
voltage magnitude constraint at bus 8.
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0 6 12 18 23
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Fig. 3: The figures on the left depict the trajectories of
PV inverter active and reactive power injections and voltage
magnitude at bus 8. The black solid lines denote the mean
trajectories. The colored dashed lines denote the realized
trajectories for several independent sample paths of the dis-
turbance process. The figures on the right depict the empirical
confidence intervals for these trajectories. We set the active
power capacity of PV inverters θ = 2.

VII. CONCLUSION

There are several interesting directions for future work. For
example, one potential drawback of the approach considered
in this paper is the explicit reliance of the control policy
on the entire disturbance history. This may incur a heavy
computational burden for a long time horizon T . Thus, it will
be of interest to extend the technique developed in this paper
to the setting in which the control policy is restricted to have
a fixed memory. It would also be of interest to explore the
extent to which the selective addition of communication links
between subsystems might improve the performance of the
resulting decentralized controller.
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