Renewables Integration: Challenges & Research Directions

Eilyan Bitar
Electrical and Computer Engineering
Cornell University

Kameshwar Poolla
Electrical Engineering and Computer Science
University of California at Berkeley

Collaborators

- Enrique Baeyens
- Duncan Callaway
- Ram Rajagopal
- Pravin Varaiya
- Pramod Khargonekar
- Felix Wu

- Anand Subramanian
- Manuel Garcia
- Paul de Martini
- Annarita Giani
- Steven Low
- Joe Eto

Berkeley, Caltech, Cornell, Stanford, Valladolid, Florida ARPA-E, LBNL, INL, Los Alamos, Newport

Outline

- Motivation
- Challenges
- Renewables integration today
- The opportunities tomorrow

The Push for Renewables

Current % penetration in US is modest...

...but there is a lot coming and it's coming fast.

Drivers for Change

- Global climate change
 - Reduction of carbon emissions
- Energy security
 - Geopolitically stable production of fossil fuels
- Economic growth in the developing world
 - Production and distribution of energy in usable forms
 - Electricity and transportation

EPRI Prism Chart

Challenges

- Large levelized costs expensive relative to natural gas
- Limited transmission access requires construction of new lines
- Variability requires "backup" generation

Туре	CF(%)	Сар	Fixed O&M	Var O&M	Trans	Total
Gas	87	17.9	1.9	42.1	1.2	63.1
Coal	85	65.3	3.9	24.3	1.2	94.8
Wind	34	83.9	9.6	0.0	3.5	97.0
ccs	85	92.7	9.2	33.1	1.2	136.2
PV	25	194.6	12.1	0.0	4.0	210.7
Offshr	34	209.3	28.1	0.0	5.9	243.2

- Numbers don't account for variability costs
- Not competitive with gas

Source: EIA, Estimated levelized cost

(\$/MWh) of new generation resources, 2016

The Variability Challenge

Wind and solar are variable sources of energy:

- Non-dispatchable cannot be controlled on demand
- Intermittent exhibit large fluctuations
- Uncertain difficult to forecast

Wind is a non-stationary process!

EX: Aggregate wind power across BPA

Non-stationary process

Wind Integration Today

Aggressive RPS targets in many states (e.g. CA 33% by 2020)

Commonly used subsidies

- Guaranteed grid access all wind taken, treated as negative load
- Feed-in tariff (FIT) fixed per-unit price for energy produced
- Production tax credit (PTC) 2.2 cent per kilowatt-hour tax credit
- Variability cost exemption cost of reserves socialized among LSE's

The current approach will not scale – early signs....

- Increased reserve requirements
- Subjection of wind to reserve costs
- Federal PTC may expire
- Competition from natural gas

Competition from Natural Gas

We are experiencing a boom in natural gas production

Perceived benefits

- Sharp decline in cost
- Cleaner than trad, fossil fuels
- Dispatchable

Potential pitfalls

- Price will not remain low due to arbitrage with oil, environmental costs
- Hidden emissions due to flaring and fugitive losses mitigate GHG savings
- Shortsighted to abandon renewables in favor of gas
- Gas can complement wind!

Are we Doomed to Repeat the Past?

1973. OAPEC oil embargo

1980. Carter administration sets goal or 28% renewable energy penetration.

1981. Renewables lose their competitive edge after the collapse of world oil prices in the early 1980's and the expiration of Federal tax credits.

2003-04. Increased fuel costs and concerns of global warming led to renewed interest in renewables

Today. Will natural gas kill renewables?

Making Renewables Competitive

Supply side Solutions

- Penalties for injected variability → optimal contracts
- Firming with local generation, storage, better forecasting
- Aggregation strategies

System Operations Solutions

- Stochastic optimal dispatch coupling decisions across time
- Improved forecasting on multiple horizons

Demand side Solutions

- Resource management architecture: GRiP
- Coordinated control of end-use devices
- Market mechanisms to induce consumer participation

Course Outline

0900 - 930am	Introduction: Renewable integration issues	
0930 - 1045pm	Supply Side Solutions	
	Optimal Contracts	
	Aggregation	
1100 - 1200am	System Operations Solutions	
	Risk Limiting Dispatch	
1330 - 1500pm	Demand Side solutions	
	Architectures, Distributed resource coordination	
	Demand Response: control and pricing	
1515 - 1530pm	Conclusions and other opportunities	